Iranian Journal of Neurology

Short Communication

Iran J Neurol 2018; 17(2): 82-5

Investigating related factors with mortality rate in patients with postoperative meningitis: One longitudinal follow up study in Iran

Received: 19 Dec. 2017 Accepted: 16 Feb. 2018

Arezoo Chouhdari^{1,2}, Kaveh Ebrahimzadeh¹, Omidvar Rezaei¹, Mohammad Samadian¹, Giv Sharifi¹, Mohammadreza Hajiesmaeili³

Keywords

Incidence; Mortality Rate; Related Factor; Postoperative Complications; Meningitis

Abstract

Background: Postoperative meningitis (POM) is the most dreaded cause of morbidity and mortality in neurosurgery patients. This study aimed to identify incidence and mortality rate as well as related factors to outcome in patients with POM.

Methods: This descriptive longitudinal study conducted on patients with POM in duration of 2 years. Incidence and mortality rates as well as related factors were studied.

Results: The incidence and mortality rates of POM was 8.9% and 50%, respectively. There were statistically significant association between male gender, as well as having mechanical ventilation, and death outcome in univariable analysis. In addition, in multivariable logistic regression analysis, length of intensive care unit (ICU) stay of more than 7 days [Odds ratio (OR): 1.2, confidence interval of 95%

(95%CI): 1.02-6.2), mechanical ventilation (OR: 1.1, 95%CI: 1.05-5.1], positive cerebrospinal fluid (CSF) culture (OR: 2.4, 95%CI: 1.9-4.08) were predicting factors to death outcome. Finally, we found an inverse relationship between survival function and length of ICU stay in patients with POM.

Conclusion: According to the high rates of incidence and mortality due to POM in this study, preventive studies to decrease this dreaded cause of morbidity and mortality in neurosurgery patients should be the planned.

Introduction

Postoperative meningitis (POM) is an uncommon (0.3-8.1 percent) but life-threatening complication of intracranial surgery.¹⁻³ This complication is fatal with high morbidity and mortality rates of 20 to 50%.^{4,5} Moreover, POM is associated with prolonged hospitalization, multiple surgeries, broad-spectrum antibiotic treatment, and increase in total cost of illness.⁶⁻⁷

Several risk factors have been known, such as postoperative cerebrospinal fluid (CSF) leakage,

Iranian Journal of Neurology © 2018

Email: ijnl@tums.ac.ir

Corresponding Author: Arezoo Chouhdari Email: chouhdariarezoo@gmail.com

¹ Skull Base Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

² Clinical Research Development Center, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran

³ Anesthesiology Research Center, Loghman Hakim Medical Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran

CSF shunts, concurrent incision infection, long-time operation over 4 hours, and emergency surgery. ^{8,9} Other studies have reported some risk factors like a set of a foreign body duration surgery, previous neurosurgical infection, the absence of antibiotic prophylaxis, interventions involving nasal sinuses, and previous radiation therapy. ⁸⁻¹⁰ In Kourbeti, et al. study, the incidence of post-neurosurgery meningitis reported about 4.8%, and CSF cultures were positive for microbial growth in 100% of the cases. ⁴

Despite the discovery of many factors associated with the incidence of POM, research on the factors associated with mortality is very limited. So in this study, we investigated the incidence and mortality rates, as well as related factors in patients with POM in Loghman Hakim hospital, Tehran, Iran, as a tertiary university hospital, during the years 2015-2017.

Materials and Methods

This descriptive longitudinal study was conducted from 21 March 2015, through March 21, 2017. All 425 patients who underwent neurosurgery (open or closed) were evaluated for detection of POM duration 30 days in neurosurgery intensive care unit (ICU) of Loghman Hakim hospital, a tertiary university hospital. For diagnose of POM the criteria of Centers for Disease Control and Prevention (CDC)⁹ were used.

Basic characteristics of patients were collected. Incidence and mortality rates, as well as related factor associated to mortality rate, were evaluated. This study was approved by the ethical committee of Shahid Beheshti University of Medical Sciences, Tehran.

To report the descriptive results, the mean and standard deviation (SD), and for quantitative data, number and percent were used. For data analysis, chi-square and Fisher's exact tests, as well as, independent t and Mann-Whitney U tests, were used. We used logistic regression to show predicting factors for the outcome of patients with POM. The survival curve was plotted, too. A significant level of P < 0.05 was considered for all tests. Statistical analysis was done using SPSS software (version 19, SPSS Inc., Chicago, IL, USA).

Results

In this descriptive longitudinal study, the incidence rate of POM according to other criteria was 8.9% (n = 34). Background characteristics and

clinical and paraclinical findings of patients with POM are visible in table 1.

Table 1. Basic characteristics of patients with postoperative meningitis (POM)

postoperative me	ningitis (POM)		
Variable		Mean ± SD	
Age		46.41 ± 16.94	
Length of hospital	2.26 ± 2.95		
Duration of surger	5.49 ± 2.56		
Time between sur	is 3.67 ± 2.95		
(days)			
Mechanical Ventil	10.04 ± 10.76		
CSF lactate (mmol	55.57 ± 32.68		
Length of ICU stay	11.05 ± 7.66		
Length of hospital	24.44 ± 15.44		
Variable		n (%)	
Sex	Men	18 (52.5)	
	Women	16 (47.1)	
Diagnosis	Brain tumor	15 (44.1)	
S	Adenoma	5 (14.7)	
	Hydrocephalus	7 (20.6)	
	Cerebrovascular disease	4 (11.8)	
	Trauma	2 (5.9)	
	Colloid cyst	1 (2.9)	
Type of surgery	Open	32 (94.1)	
Type of sungery	Close	2 (5.9)	
Surgery status	Emergency	11 (32.4)	
Surgery surces	Elective	23 (67.6)	
Mechanical Yes		23 (67.6)	
Ventilation			
Prophylactic			
Antibiotics	No	34 (100) 0 (0)	
Postoperative	Yes	8 (23.5)	
ventricular drain	No	26 (76.5)	
or shunt	0	_= (, 0.0)	
Headache	Yes	23 (65.7)	
	No	12 (34.3)	
Fever	Yes	18 (52.5)	
	No	16 (47.1)	
GCS 3-8		16 (47.1)	
	9-12	9 (26.5)	
CCE 1	13-15	9 (26.5)	
CSF culture	Yes	5 (14.7)	
	Acinetobacter	4 (11.8)	
	Staphylococcus	1 (2.9)	
	No	29 (85.3)	
Outcome	Death	17 (50.0)	
	Mild disability	2 (5.9)	

SD: Standard deviation; POM: Postoperative meningitis; CSF: Cerebrospinal fluid; ICU: Intensive care unit; GCS: Glasgow coma scale

Recovery

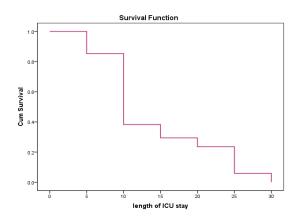
15 (44.1)

Positive CSF culture

Table 2. Results of multiple logistic regression analysis to predict outcome of death in patients with postoperative

meningius (POM)						
Variables	Surveyed	Reference	P	OR (95% CI)		
Length of ICU stay	7 days <	7 days ≥	0.04	1.2 (1.02-6.20)		
Mechanical ventilation	Yes	No	0.03	1.1 (1.05-5.10)		

No


OR: Odds ratio; 95% CI: Confidence interval of 95%; ICU: Intensive care unit; CSF: Cerebrospinal fluid

Yes

In univariable analysis, there was not any statistically significant association between the outcome (death and alive with or without disability) with age (P = 0.08), reoperation (P = 0.50), ventricular drain or shunt (P = 0.90), length of hospital stay before surgery of more than 7 days (P = 0.30), duration of surgery of more than 4 hours (P = 0.20), length of ICU stay (P = 0.05), length of hospital stay (P = 0.06), CSF lactate (P = 0.07), CSF leakage (P = 0.60), positive CSF culture (P = 0.10), or surgical site infection (P = 0.50). Only there was a statistical significant association between patient outcome with male gender (P = 0.01), and with having mechanical ventilation (P < 0.01).

In multivariable logistic regression analysis, length of ICU stay of more than 7 days (P = 0.04), mechanical ventilation (P = 0.03), and positive CSF culture (P = 0.01) were predicting factors for death outcome (Table 2).

In this study, we found an inverse relationship between patients' survival and length of ICU stay (Figure 1).

Figure 1. Survival curve in patients with postoperative meningitis (POM) in intensive care unit (ICU)

Discussion

In this survey, despite only 5 positive CSF cultures, an incidence rate of POM according to other criteria was 8.9%; 4 cases were acinetobacter, and the other was staphylococcus.

Kourbeti, et al. study showed the incidence of POM as 5% that most common organisms were gram-positive cocci.⁵ In Dashti, et al. survey, the most common organisms causing meningitis were non-lactose fermenting Gram-negative bacillus followed by Pseudomonas and Klebsiella species.¹⁰ In one of the largest neurosurgical studies, the incidence of meningitis after neurosurgical procedures was less than 1%.1 This low incidence of POM (< 1%) may relate to prescription of antibiotics prophylaxis. But, in our study, despite the administration of antibiotic prophylaxis in all patients, incidence rate of POM was high. Another study indicated that antibiotic prophylaxis reduced incision infections from 8.8% down to 4.6% (P < 0.001), but did not prevent meningitis; 1.63% in patients without antibiotic prophylaxis, and 1.5% in those who received prophylaxis antibiotic.8

2.4 (1.90-4.08)

Our study showed a significant association between male gender and death outcome in univariable analysis (P = 0.01). In Kono, et al. survey, male gender was a risk factor for POM, too (P = 0.02, OR: 3.97, 95% CI: 1.21-13.03).³

Moreover, in current research, length of ICU stays of more than 7 days), mechanical ventilation, and positive CSF culture were predictors for death outcome. In Rezaei, et al.⁶ and Yadegarynia, et al.⁷ studies, long-time operation of over 4 hours, and length of hospital stay before surgery of over 7 days were predicting factors for POM onset.

Although only 5 positive CSF culture were found due to preoperative prophylaxis antibiotics administration, it was anticipator for death outcome in patients with POM. Another study showed the CSF leakage, diabetes mellitus, and male gender were associated with an increased mortality rate of POM.¹

Conclusion

Despite prescription prophylaxis antibiotics in all neurosurgeries, incidence and mortality rate of POM was high. Therefore, it is important to conduct more research on risk factors influence POM.

Conflict of Interests

The authors declare no conflict of interest in this study.

Acknowledgments

The authors would like to thank the Clinical Research Development Center (CRDC) of Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, for their support, cooperation, and assistance throughout the period of study.

How to cite this article: Chouhdari A, Ebrahimzadeh K, Rezaei O, Samadian M, Sharifi G, Hajiesmaeili M. Investigating related factors with mortality rate in patients with postoperative meningitis: One longitudinal follow up study in Iran. Iran J Neurol 2018; 17(2): 82-5.

References

- McClelland S 3rd, Hall WA. Postoperative central nervous system infection: Incidence and associated factors in 2111 neurosurgical procedures. Clin Infect Dis 2007; 45(1): 55-9.
- Tavares WM, Machado AG, Matushita H, Plese JP. CSF markers for diagnosis of bacterial meningitis in neurosurgical postoperative patients. Arq Neuropsiquiatr 2006; 64(3A): 592-5.
- Kono Y, Prevedello DM, Snyderman CH, Gardner PA, Kassam AB, Carrau RL, et al. One thousand endoscopic skull base surgical procedures demystifying the infection potential: Incidence and description of postoperative meningitis and brain abscesses. Infect Control Hosp Epidemiol 2011; 32(1): 77-83.
- 4. Kourbeti IS, Vakis AF, Ziakas P,

- Karabetsos D, Potolidis E, Christou S, et al. Infections in patients undergoing craniotomy: Risk factors associated with post-craniotomy meningitis. J Neurosurg 2015; 122(5): 1113-9.
- Kourbeti IS, Jacobs AV, Koslow M, Karabetsos D, Holzman RS. Risk factors associated with postcraniotomy meningitis. Neurosurgery 2007; 60(2): 317-25.
- Rezaei O, Shokouhi S, Hajiesmaeili M. Postoperative meningitis: The necessity of establishing a national comprehensive program. Arch Neurosci 2016; 3(2): e34479.
- Yadegarynia D, Gachkar L, Fatemi A, Zali A, Nobari N, Asoodeh M, et al. Changing pattern of infectious agents in postneurosurgical meningitis. Caspian J

- Intern Med 2014; 5(3): 170-5.
- Korinek AM, Baugnon T, Golmard JL, van Effenterre R, Coriat P, Puybasset L. Risk factors for adult nosocomial meningitis after craniotomy role of antibiotic prophylaxis. Neurosurgery 2006; 59(1): 126-33.
- Hernandez Ortiz OH, Garcia Garcia HI, Munoz Ramirez F, Cardona Florez JS, Gil Valencia BA, Medina Mantilla SE, et al. Development of a prediction rule for diagnosing postoperative meningitis: A cross-sectional study. J Neurosurg 2018; 128(1): 262-71.
- Dashti SR, Baharvahdat H, Spetzler RF, Sauvageau E, Chang SW, Stiefel MF, et al. Operative intracranial infection following craniotomy. Neurosurg Focus 2008; 24(6): E10.