
DOI: http://dx.doi.org/10.18502/cjn.v23i4.??? 

Copyright © 2024 Iranian Neurological Association, and Tehran University of Medical Sciences Corresponding Author: Mohammad Reza Jahed-Motlagh 
Published by Tehran University of Medical Sciences Email: jahedmr@iust.ac.ir 

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 international license (http://creativecommons.org/licenses/by-
nc/4.0/). Non-commercial purposes uses of the work are permitted, provided the original work is properly cited.

 

Original Paper 

 

Curr J Neurol 2024; 23(4): 251-8 

 

 

 

 

A novel approach for migraine detection 
using localized component filtering  
and electroencephalographic spectral 
asymmetry index 
 

 

Samaneh Alsadat Saeedinia1, Mohammad Reza Jahed-Motlagh1, Abbas Tafakhori2 

 

 
1 Department of Control Electrical Engineering, School of Electrical Engineering, Iran University of Science and Technology, Tehran, Iran 
2 Iranian Center of Neurological Research, Tehran University of Medical Sciences, Tehran, Iran 

 
 
 

 
 
 

Keywords 
Electroencephalography; Migraine Disorders; 
Clustering; Artifact Rejection; Detection Method 
 

 
 
Abstract 
Background: This study aims to improve the accuracy 
and reliability of migraine detection by combining the 
localized component filtering (LCF) method with the 
electroencephalographic (EEG) spectral asymmetry 
index (SASI) method. The integration of LCF and SASI 
in the frequency domain under 3 Hz photic stimulation 
offers a novel approach for robust classification. 
Methods: EEG recordings from 13 control subjects and 
15 migraineurs were used in this study. The SASI 
values, obtained from LCF pre-processed signals, 
served as features for classification. The K-means 
clustering algorithm was applied, and the accuracy was 
evaluated using the silhouette values method. 
Results: The combination of the LCF method with the 
SASI technique resulted in a 17% improvement in 
clustering accuracy, achieving an overall accuracy of 

around 87%. This new approach outperformed the 
histogram K-means clustering method and the SASI 
technique used alone. The accuracy attained by this 
combined approach was as high as multi-layer 
perceptron (MLP) and superior to K-means clustering, 
which are two well-known approaches of artificial and 
machine learning (ML) clustering methods, respectively. 
Conclusion: This study presents a novel and effective 
approach by combining LCF and SASI for migraine 
detection, which enhances classification accuracy  
and provides valuable insights into migraine-related 
brain activity. Accurate and reliable detection of 
migraine can lead to more effective treatment and 
management of the condition, ultimately improving 
the quality of life for migraine sufferers. 
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Introduction 

Migraine is a neurological disorder characterized 
by recurrent and intense headache attacks that can 
result in significant disability and reduced quality 
of life for those affected.1 Electroencephalography 
(EEG) is a widely used technique to study brain 
activity and has been employed to investigate the 
abnormalities associated with migraine.2-4 One 
intriguing finding is the presence of EEG 
asymmetry in individuals experiencing migraine 
attacks.4,5 Research has indicated that many 
individuals with migraines exhibit elevated alpha 
activity in one hemisphere and reduced activity in 
the other, highlighting asymmetry in brain 
functioning during migraine episodes.6,7 

The observed imbalance in alpha activity in 
individuals with migraines may offer valuable 
insights into the fundamental mechanisms of the 
condition. Analysis hints that this unconventional 
brain activity could be correlated with changes in 
cerebral blood flow, metabolism, and levels of 
neurotransmitters in the impacted hemisphere. 
The asymmetry in alpha activity is thought to be 
correlated with the one-sided manifestation of 
migraine headaches, where individuals commonly 
encounter pain on a single side of the head.8,9 

Altered alpha activity, particularly the 
increased variability in peak alpha frequency, has 
been observed during migraine attacks. This 
increased variability in alpha-band oscillations 
could result from an instability in the thalamic 
generators of alpha rhythms, contributing to the 
cortical hyperexcitability seen in migraineurs.10 

 Understanding this phenomenon is crucial as it 
provides insights into the underlying mechanisms 
of migraines and assists in the development of 
targeted treatments. To this aim, examining 
asymmetry in EEG patterns, particularly changes 
in alpha activity, demonstrates the potential for 
enhancing diagnostic and therapeutic approaches 
for individuals suffering from migraines. This 
analysis possesses the capacity to distinguish 
between different kinds of migraines, like 
hemiplegic migraine and migraine with or without 
aura, by recognizing specific EEG patterns such as 
asymmetrical slow-wave activity and variations in 
alpha-band phase synchronization, which aid in 
precise diagnoses and customized treatment 
plans.11 Moreover, the inspection of EEG patterns, 
involving the asymmetry in alpha activity, gives 
valuable perspectives into the underlying neural 
mechanisms of migraine pathophysiology, for 
example, thalamic generator instability associated 

with cortical hyperexcitability in patients with 
migraine.4 Monitoring alterations in distinct EEG 
patterns, such as the normalization of alpha 
asymmetry, can serve as a significant biomarker 
for assessing the effectiveness of treatments and 
facilitating well-informed decisions regarding 
personalized treatment strategies. Drawing upon 
findings from EEG analysis of migraine asymmetry 
not only improves diagnostic precision but also 
enables the customization of treatment plans, thus 
optimizing the management of migraines.10 
Ongoing research in this field could potentially lead 
to the establishment of reliable EEG-based 
biomarkers, further propelling the progress of 
personalized medicine in migraine healthcare. 

However, detecting migraine EEG asymmetry 
poses significant challenges, and this is where 
machine learning (ML) algorithms come into play. 
ML algorithms have the potential to extract 
patterns and features from vast amounts of EEG 
data, enabling the identification of subtle 
differences between migraineurs and healthy 
individuals. These algorithms can then be trained 
to recognize specific EEG patterns characteristic of 
migraine asymmetry, thereby aiding in diagnosis 
and treatment decisions.5,6,8 

One of the primary challenges in detecting 
migraine EEG asymmetry is the presence of 
artifacts in the EEG recordings. Artifacts, such as 
eye movements and muscle contractions, can 
distort the EEG signals and lead to 
misinterpretation of the data. This can result in 
false positives or false negatives, leading to 
inaccurate diagnosis and treatment decisions.4,9,10 
Therefore, it is essential to develop techniques to 
identify and remove artifacts from the EEG 
recordings. One technique that has been proposed 
to reject artifacts and improve the accuracy of 
detecting migraine EEG asymmetry is localized 
component filtering (LCF).11 LCF effectively 
eliminates artifacts from EEG recordings, ensuring 
high-quality data for analysis. LCF is a data-driven 
method that identifies and separates EEG signals 
into localized components using independent 
component analysis (ICA) and spatial filtering. The 
localized components represent the underlying 
neural activity, while the non-localized 
components represent noise and artifacts. By 
removing the non-localized components, the 
accuracy of detecting migraine EEG asymmetry 
can be improved.11 

To detect asymmetry, this study proposes the 
use of the spectral asymmetry index (SASI) in 



 
 

 

detecting accuracy. The SASI index is a measure of 
asymmetry in the spectral power of EEG signals 
between the left and right hemispheres. Previous 
studies have shown that the SASI index is effective 
in detecting depression and other 
abnormalities.4,12,13 The SASI method assesses the 
spectral asymmetry of 15 EEG channels, 
distinguishing migraineurs from healthy subjects 
using a linear asymmetry detection method. This 
approach reduces complexity and time costs 
compared to other frequency domain methods. 
The contribution of our study is to investigate the 
role of artifacts in the accuracy of detecting 
migraine EEG asymmetry and evaluate how much 
artifact rejection can enhance the efficacy of using 
the SASI index. We propose a novel approach that 
benefits from the synergy of LCF artifact rejection 
and the SASI index to detect migraine EEG 
asymmetry. By using both techniques, we aim to 
improve the accuracy of detecting migraine EEG 
asymmetry and reduce the impact of artifacts on 
the classification results. 

To evaluate the efficacy of our proposed 
approach, we conducted experiments on a dataset 
of EEG recordings obtained from patients with 
migraine and healthy controls. We compared the 
performance of our approach to another 
classification algorithm, namely, K-means 
clustering, and evaluated the impact of artifact 
rejection on the accuracy of detection.  

The paper describes two methods, LCF and SASI 
respectively. The results of simulations using these 
methods are discussed in Results. In Discussion, the 
efficiencies of the proposed detection method and 
the histogram K-means clustering method 
presented in14 are analyzed and compared. 

Materials and Methods 

Migraines are classified into various subtypes, 
including episodic and chronic migraines, with or 
without aura. Episodic migraines manifest on 
fewer than 15 days monthly, whereas chronic 
migraines occur on 15 or more days every month, 
persisting for over three months, and entail a 
minimum of eight days with migraine symptoms. 
Migraines with aura are characterized by visual or 
other sensory disruptions that come before or 
coincide with the headache, while migraines 
without aura lack such manifestations. This 
research examines individuals experiencing 
episodic migraines without aura. The study 
examines how photic stimulation at 3 Hz and open 
eyes with no photic stimulation affect the EEG 

spectrum of individuals with migraines during  
the interictal phase. The research explored changes 
in the brain and the waves in the T5 and T6 
channels of the EEG.3 T5 and T6 channels were 
opted for to scrutinize the occipital regions of the 
brain where the migraine symptoms manifest 
themselves. These channels are crucial for 
analyzing the electrical activity in the occipital 
region, where migraine symptoms often manifest. 
Research has shown that the occipital region plays 
a key role in migraine pathophysiology, with 
changes in brain activity observed in this area 
among patients with migraine.15 Additionally, 
studies have highlighted the importance of T5 and 
T6 channels, along with other channels like T3, F7, 
O1, and O2, in diagnosing and analyzing migraine 
through EEG signals.16 

Furthermore, the use of T5 and T6 channels is 
supported by findings that suggest peculiar 
excitability of the visual cortex in patients with 
migraine, particularly in the parietal-occipital 
regions, which are crucial for understanding the 
characteristics of migraine without aura groups.17 
These channels provide valuable insights into the 
electrical activity changes associated with 
migraine, especially under flash stimulation, 
which is a common triggering method for migraine 
symptoms.15,16 

EEG signals were recorded using a 32-channel 
digital EEG Nihon Kohden device, with a sample 
rate of 512 Hz and Cz as the reference electrode. 
Each recording session lasted for 30 minutes, 
during which 3 minutes were set aside for 
hyperventilation, and no migraine attacks 
occurred. The paper studies 500 EEG samples with 
photic stimulation at a frequency of 3 Hz. 
According to the 10-20 international system, 
electrodes were placed at Fp1, Fp2, C3, C4, O1, O2, 
A1, A2, F7, F8, T3, T4, T5, T6, T1, T2, X1, X2, X3, X4, 
X5, and X6. The data were obtained from the 
Neurology Department of Imam Khomeini 
Hospital, Tehran University of Medical Sciences, 
Tehran, Iran. The age range of the patients and 
control subjects was 14 to 60 years old. The 
migraineurs under examination were patients 
without aura who were diagnosed according to the 
International Classification of Headache 
Disorders, Third Edition (ICHD-3) beta criteria17 
by expert neurologists. 

To obtain uncontaminated EEG signals, the 
LCF method was applied in the initial stage to 
enhance the equilibrium between artifact rejection 
and retention of neural activity.  

 



 
 

 

 
Figure 1. Electroencephalography (EEG) processing steps in order to obtain clean EEG signals 

 
In the subsequent stage, an infinite impulse 

response (IIR) Butterworth filter was implemented 
to retain the 0 to 33 Hz frequency band and to 
excise other frequencies. 
LCF: The LCF methodology is designed to 

localize time segments within components that are 
contaminated by artifacts. This algorithm works in 
conjunction with the blind source separation (BSS) 
preprocessing algorithm, directing the processing 
to localized segments in order to preserve the 
remaining parts of the component in their original 
form. The steps of the integrated BSS and LCF 
algorithm used in this study are illustrated in 
figures 1 and 2. These figures provide a visual 
representation of the process and highlight the key 
stages involved in the algorithm. 
 

 
Figure 2. Localized component filtering (LCF) 

algorithm steps 

 
SASI: When conducting an asymmetry analysis 

of EEG signals, various approaches can be 
employed, including both linear and nonlinear 
methods. While nonlinear methods may offer 
greater accuracy, the linear SASI method18 was 
chosen for its simplicity and low computational 
cost. According to this method, the power spectra 
of both upper and lower frequency bands are 
examined with respect to the alpha frequency as 
the central frequency band (fc). 

The boundary frequencies of the lower 
frequency band (f1, f2) are defined as: 
 

𝑓1 = (𝑓𝑐 − 6)  𝐻𝑧,   𝑓2 = (𝑓𝑐 − 2)  1 
 

While the upper boundary frequencies (f3, f4) 
are defined as: 

 

𝑓3 = (𝑓𝑐 + 2)  𝐻𝑧,   𝑓4 = (𝑓𝑐 + 26)  2 
 

As shown in equations 1 and 2. It is worth 
noting that the selected frequency bands in 
equations 1 and 2 may not necessarily match with 
the traditional EEG frequency bands. For this 
study, the lower and upper frequency bands 
considered were 3-8 Hz and 13-33 Hz, respectively. 

The SASI method estimates the spectral 
asymmetry of the EEG spectrum using a parabolic 
function, with the alpha band as its maximum 
point. It is important to ensure that the selected 
upper and lower bands compensate for the EEG 
spectral density, which is calculated using Welch's 
averaged periodogram method.19 

The SASI factor, which is used as a criterion for 
detecting migraine disorder, is calculated using 
equation 3: 
 

𝑆𝐴𝑆𝐼𝑚𝑛 =
𝑃𝐻𝑚𝑛−𝑃𝐿𝑚𝑛

𝑃𝐻𝑚𝑛+𝑃𝐿𝑚𝑛
  3 

 

Where PLmn and PHmn are the power of the lower 
and upper frequency bands for each EEG channel m 
= T1, T4, T5, T6, and subjects n = 1, 2... 20, 
respectively. PLmn and PHmn are described as follows: 
 

𝑃𝐿𝑚𝑛 = ∑ 𝑆(𝑓)𝑚𝑛
𝑓2
𝑓=𝑓1

, 𝑃𝐻𝑚𝑛 = ∑ 𝑆(𝑓)𝑚𝑛
𝑓4
𝑓3

   4 
 

Where S(f) is the power spectral density of the 
recorded EEG signal. The signal is divided into a 
series of overlapped segments (50% overlapping) 
with a length of 1024 samples. Every segment is 
multiplied by the Hanning window function as 
follows: 
 

𝜔𝑛 = 0.5 (1 − 𝑐𝑜𝑠
2𝜋𝑖

𝑁−1
)   5 

 

Where “i” is a sample index and “N” is the 
number of samples in a segment. 

Results 

MATLAB software was used to process the EEG 
signals. Figure 3 illustrates stimulated and non-
stimulated EEG signals of patients with migraine 
and healthy subjects. 

Figure 3 demonstrates that the EEG response to 

optic stimulation is elevated in individuals with 

migraines compared to those without migraines. 

This implies that migraine sufferers exhibit an 

increased sensitivity to optic stimulation when 

contrasted with individuals without migraines. 

In figure 4, we present a comparison of 

amplitude distribution at 3 Hz between EEG 

recordings with and without photic stimulation in 

nine out of fifteen patients with migraine and nine 

out of thirteen control subjects from our study 

sample, serving as the training set. 
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Figure 3. Flash stimulated and non-stimulated open eyes migraineur and healthy subject electroencephalography 

(EEG) signal 

 
The histogram depicted in figure 4 illustrates 

that a majority of patients with migraine show 
increased asymmetry in the mean EEG signals 
between the left and right hemispheres during 
stimulation compared to non-stimulation 
conditions, with asymmetry levels returning closer 

to normal in the absence of stimulation. 
Specifically, the analysis focuses on EEG channels 
from the right hemisphere, including Fp2, F4, C4, 
P4, O2, A2, F8, T4, and T6, while the left 
hemisphere is assessed using EEG signals from 
Fp1, F3, C3, P3, O1, A1, F7, T3, and T5. 

 

 

 

 
Figure 4. Histogram of mean non-stimulated and stimulated electroencephalography (EEG) signals of left and right 

hemispheres for healthy and patient groups 



 
 

 

 
Figure 5. Spectral asymmetry index (SASI) values of 9 migraineurs and 9 controls 

 
Figure 5 illustrates the average of the calculated 

SASI values for stimulated and non-stimulated 
migraineurs and healthy subjects sequentially in 
T5 and T6 channels for 70% of EEG samples, as a 
training dataset. 

Figure 5 illustrates the median SASI values for 
both patients with migraine and healthy subjects 
under both stimulation and non-stimulation 
conditions. The SASI values for patients with 
migraine are consistently higher than those for 
healthy subjects, with the calculated SASI values 
for patients with migraine under stimulation 
exceeding 0.6, while the SASI values for healthy 
subjects remain below 0.6. 

Furthermore, the plot reveals that the range of 
SASI values for healthy subjects is wider than that 
for patients with migraine, suggesting greater 
variability in the SASI values of healthy subjects. 

The t-value for the SSI values is 1.97804052, 
which indicates a moderate effect size for the 
difference between the two groups. This difference 
is statistically significant at the 0.05 level  
(P = 0.0507), suggesting that the observed 
difference between the two groups is unlikely to 
have occurred by chance. 

These findings highlight the potential of SASI 
values as a biomarker for migraine detection, as 
they demonstrate a consistent and significant 
difference between patients with migraine and 
healthy subjects. This difference could provide a 
valuable tool for identifying and diagnosing 
migraine, enabling more effective treatment and 
management of the condition. To evaluate the 

proposed method, table 1 presents the accuracy of 
classification results using proposed SASI with 
LCF, SASI without LCF, multi-layer perceptron 
(MLP),15 and K-means clustering14 on a 30% test 
sample of the EEG dataset. The clustering results are 
assessed using silhouette values.20 This comparison 
allows for assessing the accuracy of the proposed 
method relative to established methods. 
 

Table 1. Classification accuracy comparison 

Classification method Accuracy (%) 

SASI with LCF 87 

SASI without LCF 70 

MLP20 87 

K-means clustering15 85 
SASI: Spectral asymmetry index; LCF: Localized 

component filtering; MLP: Multi-layer perceptron 

 
From table 1, it is evident that the accuracy of 

SASI in migraine detection is reduced when LCF is 
not used, as the classification results are adversely 
affected by artifacts. However, utilizing the LCF 
approach in the pre-processing stage enhances the 
classification results by rejecting artifact effects, 
leading to an increase in accuracy by up to  
17%. Our method statistically improved the 
accuracy of migraine detection by up to 17% 
compared to not using artifact rejection. This 
enhancement demonstrates the effectiveness of 
incorporating LCF in the pre-processing stage to 
mitigate artifact effects, resulting in more reliable 
classification outcomes. 

The comparison results indicate that the 
combination of SASI as a linear approach with LCF 



 
 

 

pre-processing can detect migraine as accurately as 
MLP, a nonlinear classification method, and 
outperforms the K-means clustering approach. 
This superiority may stem from the simplicity and 
linearity of the SASI with LCF approach, making it 
more suitable for this specific classification task 
where the relationships between features are not 
highly complex, unlike the case with K-means 
clustering, which may struggle with non-linear 
separability in the data. 

Furthermore, SASI, when combined with LCF, 
provides a robust feature representation that 
captures essential information for migraine 
detection, enhancing the model's ability to 
differentiate between migraine and non-migraine 
patterns. Although SASI values have been studied 
for different brain disorder diagnoses, such as 
depression detection,21 or utilized as a biomarker 
combined with ML algorithms,21-27 studies indicate 
that this feature alone presents lower than 80% 
accuracy as an index for detecting disorders.21,22 
Our results confirm this issue when artifact 
rejection is not employed. However, when LCF 
artifact rejection is integrated with the SASI 
approach as a simple and linear method, a 
significant improvement in diagnosis accuracy is 
achieved, matching the accuracy of nonlinear 
methods like MLP. 

Discussion 

The present investigation sought to examine  
two primary concerns pertaining to the utilization 
of SASI in the detection of migraines. Firstly, we 
evaluated to determine whether SASI can be 
deemed a fitting characteristic for effectively 
identifying migraines. Our outcomes evinced that 
when used in conjunction with LCF  
pre-processing, SASI improves the precision of 
migraine detection. However, it is imperative to 
note that in the absence of LCF pre-processing, 
SASI may not yield dependable accuracy for the 
classification of migraines. Secondly, we delved 
into the function of artifacts in the classification 
outcomes produced via the utilization of SASI.  
Our discoveries brought to light the crucial 
significance of rejecting artifacts as an essential 

measure to augment the accuracy of classifications. 
The amalgamation of SASI with LCF pre-
processing can produce outcomes of satisfactory 
quality in migraine detection. Nevertheless, 
further scrutiny of more extensive datasets is 
suggested to enhance the accuracy of the outcomes 
in forthcoming research. 

Our findings reveal that integrating LCF  
pre-processing enhances migraine detection 
accuracy by up to 17% by mitigating artifact 
effects. Additionally, the combination of SASI with 
LCF pre-processing matches the accuracy of 
nonlinear methods like MLP and outperforms  
K-means clustering due to its simplicity and 
linearity, which are well-suited for this 
classification task. 

By and large, the outcomes of this research 
possess the potential to significantly contribute to 
the advancement of more precise and trustworthy 
methods for the identification of headaches 
utilizing EEG signals. 

 

Conclusion 

This research demonstrates that the integration of 
SASI with LCF pre-processing significantly 
enhances the accuracy of migraine detection using 
EEG signals. The findings underscore the 
importance of artifact rejection in improving 
classification outcomes, suggesting that SASI can 
be a valuable tool for identifying migraines when 
appropriately processed. The results indicate a 
promising direction for developing more precise 
and reliable methods for headache identification 
through EEG analysis. Future studies should  
focus on larger datasets to further validate these 
findings and explore additional enhancements in 
detection methodologies. 
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