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Abstract 
Background: Gliomas are a major type of central 
nervous system (CNS) tumor. Accurate diagnosis of 
glioma grade and molecular subtype such as isocitrate 
dehydrogenase 1 (IDH1) mutation status remains a 
challenge as required invasive biopsy, which is limited 
by sampling bias and procedural risks. Quantitative 
analysis of functional magnetic resonance imaging 
(MRI), particularly apparent diffusion coefficient (ADC) 
maps, can serve as a non-invasive diagnostic tool for 
gliomas. However, using ADC values from different 
tumor regions may not accurately reflect the tumors’ 

heterogeneous nature. This study aims to investigate 
the diagnostic accuracy of histogram features of  
ADC maps across the entire tumor volume in 
differentiating between low-grade gliomas (LGGs) and 
high-grade gliomas (HGGs), as well as IDH1-wildtype 
from IDH1-mutated tumors. 
Methods: This cross-sectional study included 30 
patients with glioma who were assessed prior to 
undergoing surgical resection. 
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The whole tumor histogram parameters, including 
mean, minimum, median, maximum, 10th, 25th, 75th, 
and 90th percentiles, mode, standard deviation (SD), 
kurtosis, inhomogeneity, skewness, and entropy, were 
obtained from the ADC maps. Statistical analysis was 
conducted to clarify associations between ADC 
histogram parameters, grade, and IDH1 mutation 
status. The sensitivity was determined to evaluate the 
performance of each parameter. 
Results: The analysis revealed that 10th percentile  
ADC (ADC10th) had the highest sensitivity (87.5%,  
P = 0.0423) for discriminating between glioma grades 
and IDH1 mutation status, respectively. 
Conclusion: The whole-tumor ADC histogram-
profiling indicates potential value for predicting glioma 
grades and IDH1 molecular subtypes. However, further 
validation is required before clinical adoption. 

Introduction 

Gliomas represent the most common form of 
primary central nervous system (CNS) cancer in 
adults. The World Health Organization (WHO) 
classified gliomas into low-grade (grade I and II) 
and high-grade (grade III and IV) gliomas based on 
histopathologic characteristics. The high-grade 
gliomas (HGGs) are more aggressive with a worse 
prognosis. The WHO 2021 also incorporated 
multiple molecular and genetic features, including 
isocitrate dehydrogenase 1 (IDH1), alpha-
thalassemia/mental retardation syndrome  
X-linked (ATRX), and 1p/19q, into the diagnostic 
and classification framework for adult diffuse 
gliomas.1 In this report, the IDH1 mutation status 
is one of the key prognostic markers for molecular 
classification and prognostication in adult  
diffuse gliomas. Accordingly, both low-grade 
gliomas (LGGs) and HGGs are separated into 
IDH1-wildtype and IDH1-mutant.2 Previous 
studies have shown that IDH1-mutant gliomas are 
less aggressive and more radiosensitive than 
IDH1-wildtype gliomas.3 ATRX also acts as a 
tumor suppressor, and its loss is associated with 
increased cancer aggressiveness. The codeletion of 
chromosomal arms 1p and 19q is almost 
characteristic of oligodendroglioma tumors.4 An 
accurate determination of these biomarkers’ status 
is necessary to plan treatment strategies. The 
current gold standard for determining these 
molecular features is invasive brain biopsy, which 
has limitation of sampling error due to tumor 
heterogeneity,5 and some patients cannot undergo 
surgery due to age or proximity of tumor to 
functional regions of the brain.6 The imaging 

features, particularly magnetic resonance imaging 
(MRI) (as preferred imaging modality for initial 
diagnostic of brain tumors), can be used as a 
powerful supplementary tool for non-invasive 
molecular diagnosis of gliomas. However, 
conventional structural MRI has limited ability to 
predict glioma grades or molecular subtypes due 
to partially overlapping of morphological 
features.7 Physiological imaging techniques like 
diffusion-weighted MRI (DWI) provide 
information on the random Brownian motion of 
water molecules in tissue. A major strength of DWI 
is apparent diffusion coefficient (ADC) maps, 
which illustrate the diffusion magnitude of water 
molecules in cerebral tissue, offering insights into 
tissue microscopic architecture and cellularity.8 
Recent studies have explored ADC features to 
identify biomarkers for glioma classification, with 
some demonstrating ADC’s ability to differentiate 
between ATRX-loss gliomas and 1p/19q codeleted 
gliomas.9-11 Moreover, among these studies, the 
IDH1 mutation status as the first genetic driver 
event has been paid a strong clinical attention.12 
Several studies have demonstrated that decreased 
ADC values are distinctly observed in HGGs13-15 
and the majority of IDH-mutant gliomas.16,17 
However, others have reported that ADC maps 
cannot differentiate between IDH-wildtype and 
IDH-mutant, as well as LGGs or HGGs.18-20 
Depending on the degree of malignancy and IDH1 
mutation status, gliomas are characterized by 
elevated intratumoral heterogeneity, including 
necrosis, edema, or vascular changes across 
different regions.21 A significant factor 
contributing to this difference among studies is 
linked to the utilization of mean ADC values 
derived from the regions of interest (ROIs) within 
different parts of tumor volume, which may not 
accurately describe the tumor condition because of 
the inherent heterogeneous nature of gliomas. The 
traditional ADC map analysis is based on drawing 
a ROI on a specific area of tumor that may impact 
the ADC values and interobserver variability.22 
However, the histogram analysis of the  
whole-tumor quantified textural changes of the 
magnetic resonance (MR) images provides not 
only the quantitative accumulated metrics (mode, 
percentiles, minimum and maximum values), but 
also the distribution metrics [inhomogeneity, 
kurtosis, entropy, skewness, and standard deviation 
(SD)]. These metrics quantitatively reflect tissue 
variation across tumor, thus facilitating the 
assessment of tumor heterogeneity.23 



 
 

 

The majority of past DWI research has focused 
mainly on the first-order ADC histogram 
parameters, including the mean, median, and 
percentiles. Few studies have examined both  
first- and second-order features such as skewness 
and entropy of the entire tumor ADC histogram 
profile which could better reflects tumor 
heterogeneity. Despite advancements in MRI 
techniques, there are no dependable imaging 
biomarkers for effective molecular classification, 
necessitating further research to discover new 
biomarkers. As far as we know, the comprehensive 
assessment of the diagnostic accuracy of  
mean, minimum, median, maximum, 10th, 25th, 
75th, and 90th percentiles, mode, SD, kurtosis, 
inhomogeneity, skewness, and entropy ADC 
parameters for differentiation of LGGs and  
HGGs as well as IDH1-wildtype tumors from  
IDH1-mutated has not been reported in previous 
studies. This study aimed to assess the diagnostic 
accuracy of ADC histogram profiles extracted from 
the whole tumor to classify IDH1-wildtype tumors 
from IDH1-mutated ones and differentiate 
between LGGs and HGGs. 

Materials and Methods 

Patient selection: This cross-sectional study 
included participants diagnosed with glioma prior 
to their initial surgical resection at Ghaem Hospital 
affiliated to Mashhad University of Medical 
Sciences, Mashhad, Iran, between February and 
October 2024. Based on the MedCalc analysis, to 
get a large enough sample for the analysis to be 
significant at P < 0.05 and power of 0.8, a total of  
30 patients with primary cerebral glioma were 
included in this study. Since the treatment affects 
the ADC values, to prevent incorrect interpretation 
of results, patients receiving anti-tumor treatment 
before MRI were excluded from the study. All 
MRIs were conducted less than 2 weeks prior to 
surgery. The definite grades and IDH1 mutational 
status were proved by biopsy and histopathologic 
assessment on the basis of the WHO classification 
criteria established in 2016. The written informed 
consent was also collected from all participants. 

MRI protocol: In all participants, MRI was 
conducted with a 1.5T Ingenia MRI scanner 
(Philips Medical Systems, Eindhoven, 
Netherlands). The MRI protocol included axial  
T1-weighted (T1w) spin echo (SE) sequences 
[repetition time/echo time (TR/TE): 550 msec/ 
8 msec, flip angle: 90, slice thickness: 5 mm, 
acquisition matrix: 256 × 186] pre and post contrast 

agent injection, an axial T2-weighted (T2w) turbo 
spin echo (TSE) sequence (TR/TE: 4230/91, slice 
thickness: 5 mm, flip angle: 150, acquisition matrix: 
384 × 288), and an axial DWI sequence [multi-shot 
echo planar imaging (EPI) sequence, flip angle:  
90, TR/TE: 4100/103, slice thickness: 5 mm, 
acquisition matrix: 210 × 210]. 

Histogram analysis of ADC volumes: The 
diffusion-weighted images, T1w images, and T2w 
images were extracted from the institutional 
picture archiving and communication system 
(PACS) workstation as DICOM files. The ADC 
maps together with the T2w images were  
co-registered to the corresponding T1w images 
through a rigid-body transformation in statistical 
parametric mapping (SPM12, University College 
London, London, UK). The borders of the whole 
tumors were manually drawn on every slice of 
detectable tumor in contrast-enhanced T1w MR 
images by a radiologist. In non-enhancing tumors, 
the hyperintense regions were drawn on T2w MR 
images. The entire tumors boundaries were 
applied to the corresponding ADC maps. To assess 
the tumors’ characteristics, the ADC histogram 
profiles of the entire tumor volume were 
consecutively calculated using the in-house 
software program developed using MATLAB 
software (MathWorks Inc., Natick, MA, USA), 
providing the following set of features: mean, 
minimum, median, maximum, 10th percentile 
(ADCp10), 25th percentile (ADCp25), 75th 
percentile (ADCp75), 90th percentile (ADCp90), 
mode, SD, kurtosis (peakedness of the histogram), 
inhomogeneity, skewness (asymmetry of the 
histogram), and entropy (irregularity of image 
intensity). In order to assess intraobsever 
variability, tumor boundaries for eight randomly 
selected patients were redelineated by the 
radiologist after a pause of two weeks. ADC 
histogram parameters derived from first 
segmentation were compared with second 
segmentation using a Wilcoxon signed-rank test. 

Histopathologic analysis: All tumor specimens 
were preserved in formaldehyde and embedded in 
paraffin for immunohistochemical analysis and 
histopathological diagnosis. The embedded 
samples were sectioned to a thickness of 3 μm and 
stained with hematoxylin and eosin (H&E). 
Immunohistochemistry was performed using 
specific antibodies targeting IDH1-R132H. IDH1 
immunolabelling that produced intense cytoplasmic 
staining was considered as IDH1-mutant.  

All statistical analyses were conducted using 



 
 

 

the SPSS software package for Windows (version 
16, SPSS Inc., Chicago, IL, USA). The normality of 
the parameters (Gaussian distribution) was 
assessed with the Shapiro-Wilk test. The 
comparison of normally-distributed ADC 
histogram metrics between HGGs and LGGs as 
well as IDH-mutant and wild-type gliomas was 
conducted with independent t-test. The non-
normally-distributed parameters were assessed 
using the Mann-Whitney U test. To determine the 
most useful distribution characteristics, we 
analyzed the effect size of each using Cohen’s d for 
normally-distributed parameters and effect size r 
for non-normally-distributed parameters. 
According to statistical conventions, Cohen’s d is 
interpreted as follows: small (d < 0.3), medium  
(d = 0.5), large (d > 0.8), and extremely large  
(d > 1).24 The statistical conventions regarding 
effect size r interpretation are: (r = 0.1-0.3) small 
effect, (r = 0.3-0.5) moderate effect, and (r ≥ 0.5) 
large effect.25 The 95% confidence interval (CI) 
based on the difference between two groups was 
also reported. Due to lack of a healthy control 
group, the performance of the investigated 
histogram features, in terms of discrimination of 
LGGs from HGGs and IDH1-mutated gliomas 
from IDH1-wildtype gliomas, was assessed using 

the calculation of sensitivity for histogram features 
that exhibited statistically significant differences in 
the comparative statistics. The outcomes with  
P-values less than 0.05 (P < 0.05) were deemed 
statistically significant. 

Results 

Participant demographics: The patients including 
10 women and 20 men whose age ranged from  
22 to 80 years, with an average age of 48 years old, 
were included in this study. Based on the 
histologic classification, 8 patients were diagnosed 
with LGGs (WHO II: n = 8) and 22 participants 
were identified with HGGs (WHO III: n = 9, WHO 
IV: n = 13). Mutations in the IDH1 gene were found 
in 8 out of 8 grade II gliomas, 8 out of 9 grade III 
gliomas, and 5 out of 13 grade IV gliomas. With the 
second segmentation, the P-value was found to be 
more than 0.05 for histogram parameters, which 
revealed the intraobserver consistency.  

Comparison of ADC histogram features 
between LGGs and HGGs: Figure 1 demonstrates 
the ADC maps, the corresponding contrast-
enhanced T1w and T2w MRI images of gliomas 
with WHO grade II, III, and IV, as well as the 
corresponding ADC histogram images plotted 
using MATLAB software. 

 

 
Figure 1. The T1-weighted (T1w) images after intravenous injection of a gadolinium-based contrast agent and the 

corresponding T2-weighted (T2w), apparent diffusion coefficient (ADC) maps, whole-tumor ADC histogram images 

plotted using MATLAB software in patients with World Health Organization (WHO) grade II, III, and IV glioma 



 
 

 

The Shapiro-Wilk test indicated that ADCmode, 
ADCmean, ADCminimum, ADCmaximum, ADCp10, 
ADCp25, ADCp75, ADCp90, ADCmedian, 
homogeneity, ADC SD, and entropy (all Ps < 0.050) 
followed a Gaussian distribution. The skewness 
and kurtosis also indicated non-Gaussian 
distribution. Table 1 presents a summary of the 
findings from the comparative statistical analysis 
of ADC histogram data of all investigated patients. 
Statistically significant differences between LGGs 
and HGGs were found for the following ADC 
histogram features: median, minimum, ADCp10, 
ADCp25, kurtosis, and entropy (all Ps < 0.050). 
Specifically, the 10th percentile (P = 0.004, 95%  
CI = 50.34-88.66, Cohen’s d = 2.01), 25th percentile 
(P = 0.049, 95% CI = 6.48-39.82, Cohen’s d = 0.57), 
median (P = 0.007, 95% CI = 254.39-317.29,  
Cohen’s d = 1.20), and minimum (P = 0.042, 95%  
CI = 13.10-64.34, Cohen’s d = 0.78) were 
significantly lower in HGGs. The effect sizes 
indicate large effects for the minimum, median, 
and 10th percentile parameters, and a moderate 
effect for the 25th percentile in distinguishing 
HGGs from LGGs. The 95% CIs further support the 
statistical significance and impact of these 
parameters, as none include zero, suggesting a 
consistent and significant separation between the 

groups. Conversely, entropy (P = 0.008, 95%  
CI = -2.87, -1.69, Cohen’s d = -2.40) and kurtosis  
(P = 0.023, 95% CI = -1.22, 4.88, r = -0.3) were found to 
be higher in HGGs. The CI for kurtosis includes zero, 
indicating uncertainty regarding the true effect of 
kurtosis in these populations. Based on the results, 
entropy (Cohen’s d = -2.4) and the 10th percentile 
(Cohen’s d = 2.01) were effective parameters for 
discriminating between HGGs and LGGs. 

Comparison of ADC histogram features between 
lDH1-mutant and wild-type gliomas: Comparison 
of histograms from ADC maps between IDH1-
mutated and IDH1-wildtype gliomas demonstrated 
statistically significant differences for the following 
features: minimum, maximum, ADCp10, 
inhomogeneity, and kurtosis. The complete results 
are presented in table 2. The histogram analyses 
showed significantly higher values for maximum  
(P = 0.0089, 95% CI = 18.4-262.2, Cohen’s d = -0.9), 
inhomogeneity (P = 0.0002, 95% CI = 0.09-0.18, 
Cohen’s d = -1.5), and kurtosis (P = 0.0344, 95%  
CI = 0.03-3.08, r = -0.3) in IDH1-wildtype tumors 
compared to IDH1-mutant gliomas. Additionally, 
lower values were found for ADCp10 (P = 0.0408, 
95% CI = 15.21-44.27, Cohen’s d = 1.1) and 
minimum (P = 0.0308, 95% CI = -25-32.42, Cohen’s 
d = 0.63) in IDH1-wildtype tumors. 

 

Table 1. Apparent diffusion coefficient (ADC) histogram parameters of whole tumoral tissue in low-grade gliomas 

(LGGs) and high-grade gliomas (HGGs) 

Histogram features LGG  
(mean ± SD) 

HGG  
(mean ± SD) 

95% CI P Effect 
size 

First-order 
features 

Minimum  
(×10-5 mm2s-1) 

59.21 ± 31.25 21.49 ± 22.17 (13.10, 64.34) 0.042 0.78d 

Maximum  
(×10-5 mm2s-1) 

273.01 ± 51.01 275.18 ± 51.88 (-110.00, 114.88) 0.970 -0.02d 

Mean (×10-5 mm2s-1) 310.56 ± 34.81 146.97 ± 32.05 (-136.27, 432.77) 0.346 0.21d 
Median  

(×10-5 mm2s-1) 
372.98 ± 35.43 89.14 ± 33.13 (254.39, 317.29) 0.007 1.20d 

Mode (×10-5 mm2s-1) 179.00 ± 45.58 118.00 ± 51.37 (19.80, 102.81) 0.345 0.30d 
ADCp10  

(×10-5 mm2s-1) 
149.00 ± 19.63 81.00 ± 22.81 (50.34, 88.66) 0.004 2.01d 

ADCp25  
(×10-5 mm2s-1) 

144.00 ± 53.60 125.00 ± 22.53 (6.48, 39.82) 0.049 0.57d 

ADCp75  
(×10-5 mm2s-1) 

220.00 ± 43.11 151.00 ± 48.52 (-59.54, 84.78) 0.810 0.18d 

ADCp90  
(×10-5 mm2s-1) 

270.00 ± 48.65 216.00 ± 51.32 (-149.00, 262.00) 0.598 0.35d 

SD (×10-5 mm2s-1) 32.61 ± 14.68 42.31 ± 16.83 (-4.08, 23.48) 0.297 -0.51d 
Inhomogeneity 0.69 ± 0.08 0.62 ± 0.78 (-0.50, 0.64) 0.578 0.11d 

Second-order 
features 

SkewnessU 0.57 ± 0.93 0.45 ± 0.81 (-0.48, 0.72) 0.679 0.06r 

KurtosisU 2.25 ± 0.93 4.08 ± 4.12 (-1.22, 4.88) 0.023 -0.30r 

Entropy 2.90 ± 0.48 5.18 ± 0.76 (-2.87, -1.69) 0.008 -2.40 
dCohen’s d parameter for effect size [small (d < 0.3), medium (d ~ 0.5), large (d > 0.8), and extremely large (d > 1) effect size]; 
UParameters analyzed using Mann-Whitney U test [mean and standard deviation (SD) are reported for descriptive purposes]; rNon-

parametric effect size, (r = 0.1-0.3) small effect, (r = 0.3-0.5) moderate effect, and (r ≥ 0.5) large effect 

LGG: Low-grade glioma; HGG: High-grade glioma; ADC: Apparent diffusion coefficient; SD: Standard deviation; CI: Confidence interval 



 
 

 

Table 2. Apparent diffusion coefficient (ADC) histogram parameters of whole tumoral tissue in isocitrate dehydrogenase 

1 (IDH1)-mutant and IDH1-wild type gliomas 

Histogram features IDH1-mutant 

glioma  

(mean ± SD) 

IDH1-wild 

type glioma  

(mean ± SD) 

95% CI P Effect 

size 

First-order 
features 

Minimum  
(×10-5 mm2s-1) 

69.16 ± 21.84 56.30 ± 28.65 (-25.00, 32.42) 0.0308 0.63d 

Maximum  
(×10-5 mm2s-1) 

227.71 ± 48.23 263.56 ± 56.34 (18.40, 262.20) 0.0089 -0.90d 

Mean (×10-5 mm2s-1) 190.06 ± 23.63 167.97 ± 34.85 (-177.66, 233.53) 0.7390 0.10d 
Median  

(×10-5 mm2s-1) 
197.95 ± 23.74 87.56 ± 32.48 (-144.00, 375.00) 0.3620 0.20d 

Mode (×10-5 mm2s-1) 129.94 ± 34.22 156.15 ± 52.13 (-400.00, 340.00) 0.8800 -0.06d 
ADCp10  

(×10-5 mm2s-1) 
104.87 ± 16.56 75.13 ± 20.62 (15.21, 44.27) 0.0408 1.10d 

ADCp25  
(×10-5 mm2s-1) 

127.34 ± 21.32 95.46 ± 23.01 (-216.00, 279.00) 0.7990 0.07d 

ADCp75  
(×10-5 mm2s-1) 

174.87 ± 22.63 156.77 ± 43.56 (-186.00, 240.00) 0.8660 0.07d 

ADCp90  
(×10-5 mm2s-1) 

232.60 ± 31.24 231.22 ± 52.61 (-108.00, 104.00) 0.9770 0.01d 

SD (×10-5 mm2s-1) 32.31 ± 8.13 43.51 ± 14.35 (-28.90, 6.44) 0.2160 -0.50d 
Inhomogeneity 0.61 ± 0.06 0.75 ± 0.05 (0.09, 0.18) 0.0002 -1.50d 

Second-order 
features 

SkewnessU 0.56 ± 0.73 0.32 ± 0.75 (-0.07, 0.55) 0.1070 0.09r 

KurtosisU 3.18 ± 1.13 4.55 ± 3.83 (0.03, 3.08) 0.0344 -0.30r 

Entropy 3.82 ± 0.35 6.12 ± 0.48 (-4.75, 0.14) 0.0671 -0.10d 
dCohen’s d parameter for effect size [small (d < 0.3), medium (d ~ 0.5), large (d > 0.8), and extremely large (d > 1) effect size]; 
UParameters analyzed using Mann-Whitney U test [mean and standard deviation (SD) are reported for descriptive purposes]; rNon-

parametric effect size, (r = 0.1-0.3) small effect, (r = 0.3-0.5) moderate effect, and (r ≥ 0.5) large effect 

ADC: Apparent diffusion coefficient; SD: Standard deviation; CI: Confidence interval; IDH-1: Isocitrate dehydrogenase 1 

 
While the minimum parameter showed a 

notable difference with a moderate positive effect 
(Cohen’s d = 0.63), its CI includes zero, indicating 
less certainty than other parameters. 
Inhomogeneity (Cohen’s d = -1.5) was the most 
effective parameter for distinguishing IDH1-
wildtype from IDH1-mutant gliomas. 

Sensitivity analysis: The analysis revealed that 
the highest sensitivity for discriminating between 
LGGs and HGGs was detected for the ADC10th 
(87.5%, P = 0.0423), median (74.63%, P = 0.0438), 
and entropy (72.70%, P = 0.008), respectively.  
The ADC10th (88.10%, P = 0.0142), kurtosis (71.43%, 
P = 0.0433), and inhomogeneity (65.0%, P < 0.0001) 
also showed high sensitivity for distinguishing 
IDH1-mutated from IDH1-wildtype gliomas. 
Table 3 presents a comprehensive summary of the 
sensitivity analysis results. 

Discussion 

Histopathological and immunohistochemical 
analyses for diagnosing glioma grade and molecular 
subtype have limitations, such as sampling bias due 
to tumor heterogeneity, invasiveness, and delayed 
diagnoses which is unfavorable for pre-operative 

surgical planning.26-28 Therefore, developing an 
effective, non-invasive method for predicting 
glioma genotyping is crucial for the treatment 
management. Gliomas exhibit heterogeneous 
microarchitecture and cellularity, which is not well 
represented by structural MR images.7 This 
heterogeneity changes the diffusion pattern within 
a tumor, leading to different texture at the 
microscopic level in ADC MRI images, which 
cannot be visually assessed due to resolution limit. 
However, these textural changes can be quantified 
through histogram analysis.  

This study evaluated whole-tumor ADC 
histogram profiles to identify reliable imaging 
biomarkers that distinguish between LGGs and 
HGGs, as well as those with and without IDH1 
mutations. In this regard, our study demonstrated 
notably reduced values of first-order ADC 
histogram features, including the median, 
minimum, ADCp10, and ADCp25 in HGGs, 
aligning with findings from previous studies that 
showed lower ADC values correlated with 
reduced extracellular space and increased cellular 
proliferation, which restricts the diffusion of 
extracellular water molecules.29,30 

 



 
 

 

Table 3. Sensitivity analysis of different apparent diffusion coefficient (ADC) histogram 

features for distinguishing low-grade gliomas (LGGs) and high-grade gliomas (HGGs) as 

well as isocitrate dehydrogenase 1 (IDH1)-mutated from IDH1-wildtype gliomas 

Histogram features Sensitivity (%) P 

Sensitivity analysis in differentiation of LGG and HGG 

Minimum (×10-5 mm2s-1) 57.50 0.0378 

Median (×10-5 mm2s-1) 74.63 0.0438 

ADCp10 (×10-5 mm2s-1) 87.50 0.0423 

ADCp25 (×10-5 mm2s-1) 60.00 0.0436 

Entropy 72.70 0.0080 

Kurtosis 72.06 0.0035 

Sensitivity analysis in differentiation of IDH1-mutant and IDH1-wildtype gliomas 

Maximum (×10-5 mm2s-1) 41.15 0.0412 

Minimum (×10-5 mm2s-1) 40.50 0.0082 

ADCp10 (×10-5 mm2s-1) 88.10 0.0142 

Inhomogeneity 65.00 < 0.0001 

Kurtosis 71.43 0.0433 
LGG: Low-grade glioma; HGG: High-grade glioma; ADC: Apparent diffusion coefficient; IDH-1: 

Isocitrate dehydrogenase 1 

 
Lee et al. found lower ADC values for ADCp10 

parameter in HGGs (P = 0.05), but their analysis 
used ROI measurements instead of whole-tumor 
profiling.31 The whole-tumor histograms likely 
offer a more comprehensive evaluation of tumor 
heterogeneity, as indicated by the significant effect 
sizes for ADCp10 (P = 0.0043, CI = 50.34-88.66, 
Cohen’s d = 2.01) in our study. Numerous studies 
indicate that lower ADC values serve as a negative 
prognostic biomarker in gliomas, correlating with 
poor survival rates.32,33 In contrast, second-order 
parameters like entropy and kurtosis were 
significantly higher in HGGs (P < 0.05), reflecting 
increased microstructural randomness. These 
results are consistent with Kurokawa et al.34 and 
Soliman et al.,35 who reported elevated entropy  
(P = 0.001) and kurtosis (P = 0.004) in high-grade 
tumors, suggesting these metrics represent the 
chaotic architecture of aggressive gliomas. 
However, while entropy showed strong 
discriminative ability (Cohen’s d = -2.4) between 
HGGs and LGGs, the CI for kurtosis included zero 
in our study, indicating uncertainty in its effect, 
possibly due to small sample size or data 
variability. The sensitivity analysis indicated that 
among the parameters with significant differences, 
ADC10th, median, and entropy had high sensitivity 
for identifying glioma grade, aligning with Ryu  
et al.36 findings on entropy’s role (P = 0.006) in 
assessing tumor heterogeneity. Conversely, Wang 
et al. found that tumoral inhomogeneity (P = 0.048) 
was effective in differentiating glioma grades.37 
This discrepancy may stem from the use of single 
ROI approach, compared to the whole tumor-

volume approach used in this research. In addition 
to the morphological features, the IDH1 mutation 
is an important prognostic factor in patients with 
glioma. IDH1-mutated tumors are associated with 
more favorable individual outcomes and higher 
sensitivity to chemotherapy.38 Regarding IDH1 
mutation status, our study revealed higher values 
of maximum, inhomogeneity, and kurtosis, along 
with lower values of minimum and ADCp10 in 
IDH1-wildtype gliomas compared to IDH1-mutant 
tumors (P < 0.05). These findings align with reports 
by Liu et al.39 and Lee et al.40 who associated 
increased heterogeneity and reduced ADC values 
(minimum and ADCp10) with IDH1-wildtype 
gliomas, potentially reflecting greater cellularity, 
necrosis, and cystic degeneration. In our study, the 
minimum parameter showed less certainty 
compared to other parameters, as its CI included 
zero. In the current study, ADC10th, median, and 
entropy values demonstrated high sensitivity for 
distinguishing IDH1 mutation status. 

This was in agreement with Liu et al. findings, 
which reported heterogeneity as one of the 
effective parameters in differentiating IDH1 
mutation status in grade II and III gliomas.39 
However, the variations exist among studies 
regarding the reliability of different parameters, 
indicating a need for further investigation. For 
example, Gihr et al.41 reported the entropy, while 
Lee et al.40 reported the mean of ADC maps as an 
effective parameter in distinguishing IDH1 
mutation status. The presented ADC histogram 
analysis highlights the likely potential of some 
parameters to differentiate glioma grades and 



 
 

 

IDH1 mutation status. The non-invasive 
differentiation of grade and IDH1 mutation status 
could guide preoperative planning, and inform 
personalized treatment strategies, since IDH1-
wildtype gliomas are less responsive to 
radiotherapy and chemotherapy.3 By providing 
these insights preoperatively, whole-tumor ADC 
profiling could optimize therapeutic decision-
making, ultimately improving patient outcomes. 
However, this study alone cannot fully validate the 
meaningfulness of these features, but it indicates 
the potential value of this imaging biomarker.  

Our research has several limitations, including 
a relatively small sample size, a single-center  
study design, and the potential for selection bias. 
We utilized data exclusively from 1.5T MRI 
systems, which can result in decreased signal-to-
noise ratios and consequently less spatial detail 
compared to higher field strengths. While the 
study focuses on imaging-derived features, other 
clinical variables that could influence IDH1 
mutation status and glioma grade were not 
included in the statistical model. Additionally, the 
use of a manual segmentation method to delineate 
tumor boundaries and the assessment of 
intraobserver variability in relatively small 
number of patients may affect reproducibility. 
Further multi-center studies with a larger number 
of cases regarding integration of ADC histogram 
analysis with other advanced imaging modalities 

along with multivariable models considering 
additional factors affecting glioma grade and IDH1 
mutation status could further refine diagnostic 
accuracy of histogram parameters and improve the 
features’ reliability. 

Conclusion 

Whole-tumor histogram-derived ADC profiles 
provide various significant parameters, which 
indicate potential value for predicting glioma 
grades and IDH1 molecular subtypes. However, 
further investigations are required to validate the 
diagnostic performance of these parameters before 
clinical application.  
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