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Abstract

Background: Gliomas are a major type of central
nervous system (CNS) tumor. Accurate diagnosis of
glioma grade and molecular subtype such as isocitrate
dehydrogenase 1 (IDH1) mutation status remains a
challenge as required invasive biopsy, which is limited
by sampling bias and procedural risks. Quantitative
analysis of functional magnetic resonance imaging
(MRY), particularly apparent diffusion coefficient (ADC)
maps, can serve as a non-invasive diagnostic tool for
gliomas. However, using ADC values from different
tumor regions may not accurately reflect the tumors’

heterogeneous nature. This study aims to investigate
the diagnostic accuracy of histogram features of
ADC maps across the entire tumor volume in
differentiating between low-grade gliomas (LGGs) and
high-grade gliomas (HGGs), as well as IDH1-wildtype
from IDH1-mutated tumors.

Methods: This cross-sectional study included 30
patients with glioma who were assessed prior to
undergoing surgical resection.
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DWI for IDH1 mutation prediction in gliomas

The whole tumor histogram parameters, including
mean, minimum, median, maximum, 10", 25" 75t
and go'" percentiles, mode, standard deviation (SD),
kurtosis, inhomogeneity, skewness, and entropy, were
obtained from the ADC maps. Statistical analysis was
conducted to clarify associations between ADC
histogram parameters, grade, and IDH1 mutation
status. The sensitivity was determined to evaluate the
performance of each parameter.

Results: The analysis revealed that 10 percentile
ADC (ADCao'™) had the highest sensitivity (87.5%,
P = 0.0423) for discriminating between glioma grades
and IDH1 mutation status, respectively.

Conclusion: The whole-tumor ADC histogram-
profiling indicates potential value for predicting glioma
grades and IDH1 molecular subtypes. However, further
validation is required before clinical adoption.

Introduction

Gliomas represent the most common form of
primary central nervous system (CNS) cancer in
adults. The World Health Organization (WHO)
classified gliomas into low-grade (grade I and II)
and high-grade (grade Il and IV) gliomas based on
histopathologic characteristics. The high-grade
gliomas (HGGs) are more aggressive with a worse
prognosis. The WHO 2021 also incorporated
multiple molecular and genetic features, including
isocitrate dehydrogenase 1 (IDH1), alpha-
thalassemia/mental  retardation  syndrome
X-linked (ATRX), and 1p/19q, into the diagnostic
and classification framework for adult diffuse
gliomas.! In this report, the IDH1 mutation status
is one of the key prognostic markers for molecular
classification and prognostication in adult
diffuse gliomas. Accordingly, both low-grade
gliomas (LGGs) and HGGs are separated into
IDH1-wildtype and IDHI1-mutant.? Previous
studies have shown that IDH1-mutant gliomas are
less aggressive and more radiosensitive than
IDH1-wildtype gliomas.3 ATRX also acts as a
tumor suppressor, and its loss is associated with
increased cancer aggressiveness. The codeletion of
chromosomal arms 1p and 19q is almost
characteristic of oligodendroglioma tumors.# An
accurate determination of these biomarkers” status
is necessary to plan treatment strategies. The
current gold standard for determining these
molecular features is invasive brain biopsy, which
has limitation of sampling error due to tumor
heterogeneity,® and some patients cannot undergo
surgery due to age or proximity of tumor to
functional regions of the brain.® The imaging

2 Curr ] Neurol, Vol. 24, No. 1 (2025)

https://cjn.tums.ac.ir

features, particularly magnetic resonance imaging
(MRI) (as preferred imaging modality for initial
diagnostic of brain tumors), can be used as a
powerful supplementary tool for non-invasive
molecular diagnosis of gliomas. However,
conventional structural MRI has limited ability to
predict glioma grades or molecular subtypes due
to partially overlapping of morphological
features.” Physiological imaging techniques like
diffusion-weighted ~ MRI ~ (DWI)  provide
information on the random Brownian motion of
water molecules in tissue. A major strength of DWI
is apparent diffusion coefficient (ADC) maps,
which illustrate the diffusion magnitude of water
molecules in cerebral tissue, offering insights into
tissue microscopic architecture and cellularity.®
Recent studies have explored ADC features to
identify biomarkers for glioma classification, with
some demonstrating ADC’s ability to differentiate
between ATRX-loss gliomas and 1p/19q codeleted
gliomas.”!1 Moreover, among these studies, the
IDH1 mutation status as the first genetic driver
event has been paid a strong clinical attention.’?
Several studies have demonstrated that decreased
ADC values are distinctly observed in HGGs1315
and the majority of IDH-mutant gliomas.617
However, others have reported that ADC maps
cannot differentiate between IDH-wildtype and
IDH-mutant, as well as LGGs or HGGs.18-20
Depending on the degree of malignancy and IDH1
mutation status, gliomas are characterized by
elevated intratumoral heterogeneity, including
necrosis, edema, or vascular changes across
different  regions.?’ A  significant factor
contributing to this difference among studies is
linked to the utilization of mean ADC values
derived from the regions of interest (ROIs) within
different parts of tumor volume, which may not
accurately describe the tumor condition because of
the inherent heterogeneous nature of gliomas. The
traditional ADC map analysis is based on drawing
a ROI on a specific area of tumor that may impact
the ADC values and interobserver variability.??
However, the histogram analysis of the
whole-tumor quantified textural changes of the
magnetic resonance (MR) images provides not
only the quantitative accumulated metrics (mode,
percentiles, minimum and maximum values), but
also the distribution metrics [inhomogeneity,
kurtosis, entropy, skewness, and standard deviation
(SD)]. These metrics quantitatively reflect tissue
variation across tumor, thus facilitating the
assessment of tumor heterogeneity.?
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The majority of past DWI research has focused
mainly on the first-order ADC histogram
parameters, including the mean, median, and
percentiles. Few studies have examined both
first- and second-order features such as skewness
and entropy of the entire tumor ADC histogram
profile which could better reflects tumor
heterogeneity. Despite advancements in MRI
techniques, there are no dependable imaging
biomarkers for effective molecular classification,
necessitating further research to discover new
biomarkers. As far as we know, the comprehensive
assessment of the diagnostic accuracy of
mean, minimum, median, maximum, 10th, 25th
75%h, and 90t percentiles, mode, SD, kurtosis,
inhomogeneity, skewness, and entropy ADC
parameters for differentiation of LGGs and
HGGs as well as IDH1-wildtype tumors from
IDH1-mutated has not been reported in previous
studies. This study aimed to assess the diagnostic
accuracy of ADC histogram profiles extracted from
the whole tumor to classify IDH1-wildtype tumors
from IDHIl-mutated ones and differentiate
between LGGs and HGGs.

Materials and Methods

Patient selection: This cross-sectional study
included participants diagnosed with glioma prior
to their initial surgical resection at Ghaem Hospital
affiliated to Mashhad University of Medical
Sciences, Mashhad, Iran, between February and
October 2024. Based on the MedCalc analysis, to
get a large enough sample for the analysis to be
significant at P < 0.05 and power of 0.8, a total of
30 patients with primary cerebral glioma were
included in this study. Since the treatment affects
the ADC values, to prevent incorrect interpretation
of results, patients receiving anti-tumor treatment
before MRI were excluded from the study. All
MRIs were conducted less than 2 weeks prior to
surgery. The definite grades and IDH1 mutational
status were proved by biopsy and histopathologic
assessment on the basis of the WHO classification
criteria established in 2016. The written informed
consent was also collected from all participants.
MRI protocol: In all participants, MRI was
conducted with a 1.5T Ingenia MRI scanner
(Philips Medical Systems, Eindhoven,
Netherlands). The MRI protocol included axial
T1-weighted (T1lw) spin echo (SE) sequences
[repetition time/echo time (TR/TE): 550 msec/
8 msec, flip angle: 90, slice thickness: 5 mm,
acquisition matrix: 256 x 186] pre and post contrast
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agent injection, an axial T2-weighted (T2w) turbo
spin echo (TSE) sequence (TR/TE: 4230/91, slice
thickness: 5 mm, flip angle: 150, acquisition matrix:
384 x 288), and an axial DWI sequence [multi-shot
echo planar imaging (EPI) sequence, flip angle:
90, TR/TE: 4100/103, slice thickness: 5 mm,
acquisition matrix: 210 x 210].

Histogram analysis of ADC wvolumes: The
diffusion-weighted images, T1w images, and T2w
images were extracted from the institutional
picture archiving and communication system
(PACS) workstation as DICOM files. The ADC
maps together with the T2w images were
co-registered to the corresponding Tlw images
through a rigid-body transformation in statistical
parametric mapping (SPM12, University College
London, London, UK). The borders of the whole
tumors were manually drawn on every slice of
detectable tumor in contrast-enhanced Tlw MR
images by a radiologist. In non-enhancing tumors,
the hyperintense regions were drawn on T2w MR
images. The entire tumors boundaries were
applied to the corresponding ADC maps. To assess
the tumors’ characteristics, the ADC histogram
profiles of the entire tumor volume were
consecutively calculated using the in-house
software program developed using MATLAB
software (MathWorks Inc., Natick, MA, USA),
providing the following set of features: mean,
minimum, median, maximum, 10t percentile
(ADCp10), 25t percentile (ADCp25), 75t
percentile (ADCp75), 90t percentile (ADCp90),
mode, SD, kurtosis (peakedness of the histogram),
inhomogeneity, skewness (asymmetry of the
histogram), and entropy (irregularity of image
intensity). In order to assess intraobsever
variability, tumor boundaries for eight randomly
selected patients were redelineated by the
radiologist after a pause of two weeks. ADC
histogram parameters derived from first
segmentation were compared with second
segmentation using a Wilcoxon signed-rank test.

Histopathologic analysis: All tumor specimens
were preserved in formaldehyde and embedded in
paraffin for immunohistochemical analysis and
histopathological ~diagnosis. The embedded
samples were sectioned to a thickness of 3 pm and
stained with hematoxylin and eosin (H&E).
Immunohistochemistry was performed using
specific antibodies targeting IDH1-R132H. IDH1
immunolabelling that produced intense cytoplasmic
staining was considered as IDH1-mutant.

All statistical analyses were conducted using
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the SPSS software package for Windows (version
16, SPSS Inc., Chicago, IL, USA). The normality of

the parameters (Gaussian distribution) was
assessed with the Shapiro-Wilk test. The
comparison of normally-distributed ADC

histogram metrics between HGGs and LGGs as
well as IDH-mutant and wild-type gliomas was
conducted with independent t-test. The non-
normally-distributed parameters were assessed
using the Mann-Whitney U test. To determine the
most useful distribution characteristics, we
analyzed the effect size of each using Cohen’s d for
normally-distributed parameters and effect size r
for non-normally-distributed parameters.
According to statistical conventions, Cohen’s d is
interpreted as follows: small (d < 0.3), medium
(d = 0.5), large (d > 0.8), and extremely large
(d > 1). The statistical conventions regarding
effect size r interpretation are: (r = 0.1-0.3) small
effect, (r = 0.3-0.5) moderate effect, and (r = 0.5)
large effect.?> The 95% confidence interval (CI)
based on the difference between two groups was
also reported. Due to lack of a healthy control
group, the performance of the investigated
histogram features, in terms of discrimination of
LGGs from HGGs and IDH1-mutated gliomas
from IDH1-wildtype gliomas, was assessed using

T2.Weighted

T1.Weighted+GAD

Grade I

Grade 11l

Grade IV

ADC

the calculation of sensitivity for histogram features
that exhibited statistically significant differences in
the comparative statistics. The outcomes with
P-values less than 0.05 (P < 0.05) were deemed
statistically significant.

Results

Participant demographics: The patients including
10 women and 20 men whose age ranged from
22 to 80 years, with an average age of 48 years old,
were included in this study. Based on the
histologic classification, 8 patients were diagnosed
with LGGs (WHO II: n = 8) and 22 participants
were identified with HGGs (WHO III: n =9, WHO
IV:n =13). Mutations in the IDH1 gene were found
in 8 out of 8 grade II gliomas, 8 out of 9 grade III
gliomas, and 5 out of 13 grade IV gliomas. With the
second segmentation, the P-value was found to be
more than 0.05 for histogram parameters, which
revealed the intraobserver consistency.

Comparison of ADC histogram features
between LGGs and HGGs: Figure 1 demonstrates
the ADC maps, the corresponding contrast-
enhanced Tlw and T2w MRI images of gliomas
with WHO grade 1I, III, and 1V, as well as the
corresponding ADC histogram images plotted
using MATLAB software.

Histogram of Tumor ADC Values
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Histogram of Tumor ADC Map plotted using MATLAB software

Figure 1. The T1-weighted (T1w) images after intravenous injection of a gadolinium-based contrast agent and the
corresponding T2-weighted (T2w), apparent diffusion coefficient (ADC) maps, whole-tumor ADC histogram images
plotted using MATLAB software in patients with World Health Organization (WHO) grade I, 111, and 1V glioma
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The Shapiro-Wilk test indicated that ADCmode,
ADCmeam ADCminimum/ ADCmaximum, ADCplO,
ADCp25, ADCp75, ADCp90, ADCedian,
homogeneity, ADC SD, and entropy (all Ps < 0.050)
followed a Gaussian distribution. The skewness
and kurtosis also indicated non-Gaussian
distribution. Table 1 presents a summary of the
findings from the comparative statistical analysis
of ADC histogram data of all investigated patients.
Statistically significant differences between LGGs
and HGGs were found for the following ADC
histogram features: median, minimum, ADCp10,
ADCp25, kurtosis, and entropy (all Ps < 0.050).
Specifically, the 10t percentile (P = 0.004, 95%
CI = 50.34-88.66, Cohen’s d = 2.01), 25t percentile
(P =0.049, 95% CI = 6.48-39.82, Cohen’s d = 0.57),
median (P = 0.007, 95% CI = 254.39-317.29,
Cohen’s d = 1.20), and minimum (P = 0.042, 95%
CI = 13.10-64.34, Cohen’s d = 0.78) were
significantly lower in HGGs. The effect sizes
indicate large effects for the minimum, median,
and 10t percentile parameters, and a moderate
effect for the 25t percentile in distinguishing
HGGs from LGGs. The 95% Cls further support the
statistical significance and impact of these
parameters, as none include zero, suggesting a
consistent and significant separation between the

F. Shahedi, et al.

groups. Conversely, entropy (P = 0.008, 95%
CI = -2.87, -1.69, Cohen’s d = -2.40) and kurtosis
(P=0.023,95% CI=-1.22,4.88, r =-0.3) were found to
be higher in HGGs. The ClI for kurtosis includes zero,
indicating uncertainty regarding the true effect of
kurtosis in these populations. Based on the results,
entropy (Cohen’s d = -2.4) and the 10t percentile
(Cohen’s d = 2.01) were effective parameters for
discriminating between HGGs and LGGs.

Comparison of ADC histogram features between
IDH1-mutant and wild-type gliomas: Comparison
of histograms from ADC maps between IDHI1-
mutated and IDH1-wildtype gliomas demonstrated
statistically significant differences for the following
features: minimum, maximum, ADCp10,
inhomogeneity, and kurtosis. The complete results
are presented in table 2. The histogram analyses
showed significantly higher values for maximum
(P =0.0089, 95% CI = 18.4-262.2, Cohen’s d = -0.9),
inhomogeneity (P = 0.0002, 95% CI = 0.09-0.18,
Cohen’s d = -1.5), and kurtosis (P = 0.0344, 95%
CI = 0.03-3.08, r = -0.3) in IDH1-wildtype tumors
compared to IDH1-mutant gliomas. Additionally,
lower values were found for ADCp10 (P = 0.0408,
95% CI = 15.21-44.27, Cohen’s d = 1.1) and
minimum (P = 0.0308, 95% CI = -25-32.42, Cohen’s
d = 0.63) in IDH1-wildtype tumors.

Table 1. Apparent diffusion coefficient (ADC) histogram parameters of whole tumoral tissue in low-grade gliomas

(LGGs) and high-grade gliomas (HGGs)

Histogram features LGG HGG 95% CI P Effect
(mean + SD) (mean + SD) size
First-order Minimum 59.21+31.25 21.49 +22.17 (13.10, 64.34) 0.042 0.78¢
features (x10° mm?s?)
Maximum 273.01+51.01 275.18+51.88 (-110.00,114.88) 0.970 -0.02¢
(%105 mm?s?)
Mean (x10° mm?s1)  310.56 + 34.81  146.97 £ 32.05 (-136.27,432.77) 0.346  0.21¢
Median 372.98+3543  89.14+33.13 (254.39,317.29)  0.007  1.20¢
(x10° mm?3s?)
Mode (x10° mm?2s?1)  179.00 +45.58  118.00 +51.37 (19.80, 102.81) 0.345  0.30¢
ADCp10 149.00 +£19.63  81.00+22.81 (50.34, 88.66) 0.004  2.01¢
(%105 mm3s?)
ADCp25 144.00 +£53.60 125.00 £+ 22.53 (6.48, 39.82) 0.049 0.57¢
(x10° mm?s?)
ADCp75 220.00+43.11  151.00 +48.52 (-59.54, 84.78) 0.810  0.18¢
(x10° mm?s?)
ADCp90 270.00 +48.65 216.00 £51.32  (-149.00,262.00) 0.598  0.35¢
(x10°° mm?s?)
SD (x10° mm?s) 32.61+14.68 42.31+16.83 (-4.08, 23.48) 0.297  -0.51¢
Inhomogeneity 0.69 +0.08 0.62 +0.78 (-0.50, 0.64) 0.578 0.11¢
Second-order Skewness! 0.57 +0.93 0.45+0.81 (-0.48,0.72) 0.679  0.06
features Kurtosis!Y 2.25+0.93 4.08+4.12 (-1.22, 4.88) 0.023  -0.30
Entropy 2.90+0.48 5.18 £ 0.76 (-2.87,-1.69) 0.008 -2.40

dCohen’s d parameter for effect size [small (d < 0.3), medium (d ~ 0.5), large (d > 0.8), and extremely large (d > 1) effect size];
UParameters analyzed using Mann-Whitney U test [mean and standard deviation (SD) are reported for descriptive purposes]; "Non-
parametric effect size, (r = 0.1-0.3) small effect, (r = 0.3-0.5) moderate effect, and (r > 0.5) large effect
LGG: Low-grade glioma; HGG: High-grade glioma; ADC: Apparent diffusion coefficient; SD: Standard deviation; ClI: Confidence interval
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Table 2. Apparent diffusion coefficient (ADC) histogram parameters of whole tumoral tissue in isocitrate dehydrogenase
1 (IDH1)-mutant and IDH1-wild type gliomas

Histogram features IDH1-mutant IDH1-wild 95% CI P Effect
glioma type glioma size
(mean £ SD) (mean £ SD)
First-order Minimum 69.16 + 21.84 56.30 + 28.65 (-25.00,32.42)  0.0308 0.63¢
features (x10° mm?s?)
Maximum 227.71+48.23  263.56 +56.34  (18.40,262.20) 0.0089  -0.90¢
(x10° mm?s?)
Mean (x10° mm?s')  190.06 +23.63 167.97 +34.85 (-177.66,233.53) 0.7390  0.10¢
Median 197.95+23.74  87.56+32.48  (-144.00,375.00) 0.3620  0.20¢
(x10° mm3s1)
Mode (x10° mm?s?)  129.94 +34.22  156.15+52.13  (-400.00, 340.00) 0.8800  -0.06¢
ADCp10 104.87 £16.56  75.13 + 20.62 (15.21, 44.27) 0.0408  1.10¢
(x10° mm3s1)
ADCp25 127.34+21.32  95.46+23.01 (-216.00,279.00) 0.7990  0.07¢
(x10° mm?s?)
ADCp75 174.87 £22.63 156.77 £43.56 (-186.00, 240.00) 0.8660  0.07¢
(x10° mm?s?)
ADCp90 23260 £31.24 231.22+52.61 (-108.00,104.00) 0.9770  0.01¢
(x10° mm?s?)
SD (x10° mm?s?) 32.31+8.13 43.51+14.35 (-28.90, 6.44) 0.2160  -0.50¢
Inhomogeneity 0.61 £ 0.06 0.75£0.05 (0.09, 0.18) 0.0002  -1.50¢
Second-order Skewness! 0.56 +0.73 0.32+0.75 (-0.07, 0.55) 0.1070  0.09
features Kurtosis! 3.18+1.13 455 + 3.83 (0.03, 3.08) 0.0344  -0.30"
Entropy 3.82+0.35 6.12+0.48 (-4.75, 0.14) 0.0671  -0.10¢

dCohen’s d parameter for effect size [small (d < 0.3), medium (d ~ 0.5), large (d > 0.8), and extremely large (d > 1) effect size];
UParameters analyzed using Mann-Whitney U test [mean and standard deviation (SD) are reported for descriptive purposes]; "Non-
parametric effect size, (r = 0.1-0.3) small effect, (r = 0.3-0.5) moderate effect, and (r > 0.5) large effect

ADC: Apparent diffusion coefficient; SD: Standard deviation; CI: Confidence interval; IDH-1: Isocitrate dehydrogenase 1

While the minimum parameter showed a
notable difference with a moderate positive effect
(Cohen’s d = 0.63), its CI includes zero, indicating
less  certainty  than  other  parameters.
Inhomogeneity (Cohen’s d = -1.5) was the most
effective parameter for distinguishing IDHI-
wildtype from IDH1-mutant gliomas.

Sensitivity analysis: The analysis revealed that
the highest sensitivity for discriminating between
LGGs and HGGs was detected for the ADC10t
(87.5%, P = 0.0423), median (74.63%, P = 0.0438),
and entropy (72.70%, P = 0.008), respectively.
The ADC10t(88.10%, P = 0.0142), kurtosis (71.43%,
P = 0.0433), and inhomogeneity (65.0%, P < 0.0001)
also showed high sensitivity for distinguishing
IDH1-mutated from IDHI1-wildtype gliomas.
Table 3 presents a comprehensive summary of the
sensitivity analysis results.

Discussion

Histopathological ~and  immunohistochemical
analyses for diagnosing glioma grade and molecular
subtype have limitations, such as sampling bias due
to tumor heterogeneity, invasiveness, and delayed
diagnoses which is unfavorable for pre-operative
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surgical planning.?6-28 Therefore, developing an
effective, non-invasive method for predicting
glioma genotyping is crucial for the treatment
management. Gliomas exhibit heterogeneous
microarchitecture and cellularity, which is not well
represented by structural MR images.” This
heterogeneity changes the diffusion pattern within
a tumor, leading to different texture at the
microscopic level in ADC MRI images, which
cannot be visually assessed due to resolution limit.
However, these textural changes can be quantified
through histogram analysis.

This study evaluated whole-tumor ADC
histogram profiles to identify reliable imaging
biomarkers that distinguish between LGGs and
HGGs, as well as those with and without IDH1
mutations. In this regard, our study demonstrated
notably reduced values of first-order ADC
histogram features, including the median,
minimum, ADCpl0, and ADCp25 in HGGs,
aligning with findings from previous studies that
showed lower ADC values correlated with
reduced extracellular space and increased cellular
proliferation, which restricts the diffusion of
extracellular water molecules.?%30
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Table 3. Sensitivity analysis of different apparent diffusion coefficient (ADC) histogram
features for distinguishing low-grade gliomas (LGGs) and high-grade gliomas (HGGSs) as
well as isocitrate dehydrogenase 1 (IDH1)-mutated from IDH1-wildtype gliomas

Histogram features

Sensitivity analysis in differentiation of LGG and HGG

Minimum (x10-° mm?s?)
Median (x10° mm?s?)
ADCp10 (x10° mm?s?)
ADCp25 (x10° mm?s?)
Entropy

Kurtosis

Sensitivity analysis in differentiation of IDH1-mutant and IDH1-wildtype gliomas

Maximum (x10° mm?2s?)
Minimum (x10° mm?st)
ADCp10 (x10° mm?s?)
Inhomogeneity

Kurtosis

Sensitivity (%) P
57.50 0.0378
74.63 0.0438
87.50 0.0423
60.00 0.0436
72.70 0.0080
72.06 0.0035
41.15 0.0412
40.50 0.0082
88.10 0.0142
65.00 <0.0001
71.43 0.0433

LGG: Low-grade glioma; HGG: High-grade glioma; ADC: Apparent diffusion coefficient; IDH-1:

Isocitrate dehydrogenase 1

Lee et al. found lower ADC values for ADCp10
parameter in HGGs (P = 0.05), but their analysis
used ROI measurements instead of whole-tumor
profiling.®® The whole-tumor histograms likely
offer a more comprehensive evaluation of tumor
heterogeneity, as indicated by the significant effect
sizes for ADCp10 (P = 0.0043, CI = 50.34-88.66,
Cohen’s d = 2.01) in our study. Numerous studies
indicate that lower ADC values serve as a negative
prognostic biomarker in gliomas, correlating with
poor survival rates.3%23 In contrast, second-order
parameters like entropy and kurtosis were
significantly higher in HGGs (P < 0.05), reflecting
increased microstructural randomness. These
results are consistent with Kurokawa et al.3* and
Soliman et al.®® who reported elevated entropy
(P =0.001) and kurtosis (P = 0.004) in high-grade
tumors, suggesting these metrics represent the
chaotic architecture of aggressive gliomas.
However, while entropy showed strong
discriminative ability (Cohen’s d = -2.4) between
HGGs and LGGs, the CI for kurtosis included zero
in our study, indicating uncertainty in its effect,
possibly due to small sample size or data
variability. The sensitivity analysis indicated that
among the parameters with significant differences,
ADC10%, median, and entropy had high sensitivity
for identifying glioma grade, aligning with Ryu
et al.% findings on entropy’s role (P = 0.006) in
assessing tumor heterogeneity. Conversely, Wang
et al. found that tumoral inhomogeneity (P = 0.048)
was effective in differentiating glioma grades.3”
This discrepancy may stem from the use of single
ROI approach, compared to the whole tumor-
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volume approach used in this research. In addition
to the morphological features, the IDH1 mutation
is an important prognostic factor in patients with
glioma. IDH1-mutated tumors are associated with
more favorable individual outcomes and higher
sensitivity to chemotherapy.®® Regarding IDH1
mutation status, our study revealed higher values
of maximum, inhomogeneity, and kurtosis, along
with lower values of minimum and ADCp10 in
IDH1-wildtype gliomas compared to IDH1-mutant
tumors (P < 0.05). These findings align with reports
by Liu et al.® and Lee et al.#® who associated
increased heterogeneity and reduced ADC values
(minimum and ADCp10) with IDH1-wildtype
gliomas, potentially reflecting greater cellularity,
necrosis, and cystic degeneration. In our study, the
minimum parameter showed less certainty
compared to other parameters, as its Cl included
zero. In the current study, ADC10%, median, and
entropy values demonstrated high sensitivity for
distinguishing IDH1 mutation status.

This was in agreement with Liu et al. findings,
which reported heterogeneity as one of the
effective parameters in differentiating IDHI1
mutation status in grade II and III gliomas.®
However, the variations exist among studies
regarding the reliability of different parameters,
indicating a need for further investigation. For
example, Gihr et al.*! reported the entropy, while
Lee et al.#0 reported the mean of ADC maps as an
effective parameter in distinguishing IDH1
mutation status. The presented ADC histogram
analysis highlights the likely potential of some
parameters to differentiate glioma grades and
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IDH1 mutation status. The non-invasive
differentiation of grade and IDH1 mutation status
could guide preoperative planning, and inform
personalized treatment strategies, since IDH1-
wildtype gliomas are less responsive to
radiotherapy and chemotherapy.? By providing
these insights preoperatively, whole-tumor ADC
profiling could optimize therapeutic decision-
making, ultimately improving patient outcomes.
However, this study alone cannot fully validate the
meaningfulness of these features, but it indicates
the potential value of this imaging biomarker.

Our research has several limitations, including
a relatively small sample size, a single-center
study design, and the potential for selection bias.
We utilized data exclusively from 1.5T MRI
systems, which can result in decreased signal-to-
noise ratios and consequently less spatial detail
compared to higher field strengths. While the
study focuses on imaging-derived features, other
clinical variables that could influence IDH1
mutation status and glioma grade were not
included in the statistical model. Additionally, the
use of a manual segmentation method to delineate
tumor boundaries and the assessment of
intraobserver variability in relatively small
number of patients may affect reproducibility.
Further multi-center studies with a larger number
of cases regarding integration of ADC histogram
analysis with other advanced imaging modalities
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