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Abstract 
Background: Intracranial aneurysms (IAs) pose a 
significant risk of rupture and subarachnoid 
hemorrhage, necessitating early, accurate detection 
and risk stratification. With advances in artificial 
intelligence, deep learning (DL) has emerged as a 
transformative tool in neurovascular imaging. 
However, the clinical translation of DL applications 
remains constrained by variability in model design, 
data sources, and validation strategies. The aim of the 
present study was to systematically map and evaluate 
the landscape of DL applications in the detection, 
segmentation, risk prediction, and outcome 
assessment of IAs, with attention to methodological 
rigor, clinical utility, and translational limitations. 
Methods: We conducted a scoping review of studies 
indexed in PubMed, Scopus, and Web of Science up to 
August 2023, following PRISMA-ScR guidelines. 
Eligible studies employed DL algorithms for IA-related 
diagnostic or prognostic tasks using radiological 
imaging. Data extraction included model architecture, 
imaging modality, validation strategy, performance 
metrics, and thematic focus. Study quality was 
assessed using the Joanna Briggs Institute (JBI) critical 
appraisal tools. 
Results: Forty-two studies met the inclusion criteria, 
encompassing over 10,000 patients across diverse 
imaging platforms and DL architectures. 
Convolutional neural networks (CNNs) were the most 
commonly used models, with reported sensitivities 
ranging from 73% to 99% and AUCs frequently 
exceeding 0.85. Despite promising results in IA 
detection and rupture risk prediction, only a minority 
of studies conducted external validation or addressed 
post-treatment outcomes. Major gaps include a lack 
of benchmarking across models, limited 
explainability, and regulatory or ethical frameworks. 
Conclusion: DL algorithms demonstrate strong 
diagnostic and predictive performance in IA imaging 
but face critical barriers to clinical integration, 
including interpretability challenges, dataset 
heterogeneity, and limited generalizability. Future 
research should prioritize multicenter validation, 
explainable AI techniques, and outcome-focused 
modeling to advance safe and effective deployment in 
neurosurgical care. 

Introduction 

Deep learning (DL) is a subset of machine learning 
(ML) that aims to extract high-level 
representations, analyze them, and learn relevant 
information from raw data using hierarchical 
architectures.1,2 It consists of various algorithms 
used to develop complex generalized systems 

capable of solving problems and providing 
accurate predictions. ML and DL algorithms have 
become popular tools for addressing various 
challenges in medical imaging fields.3 

These algorithms use supervised or 
unsupervised methods and rely on detailed 
datasets to predict early signs of disease.4 There  
are various potential applications of DL 
technology in medical imaging that can improve 
the healthcare system and patient outcomes.3 

The use of DL to predict neurosurgical 
outcomes is still in its infancy. While profound 
learning studies have shown promise, promoting 
the validity and reproducibility of DL models 
requires more data and model interpretability.5 

Surgeries related to the brain are high-risk 
procedures that carry a considerable risk of 
morbidity and mortality.2 To improve clinical 
treatment outcomes and minimize postoperative 
disability, the recovery process can incorporate DL 
and microscopic imaging to reduce risks and 
potential patient loss. Studies demonstrated that 
this approach can significantly enhance the 
neurosurgery nursing process.6 

To revolutionize neurosurgery, AI, ML, and DL 
are combined to provide insights into the patient's 
condition and assist neurosurgeons in making more 
effective decisions during surgical interventions, 
improving diagnostic and prognostic outcomes.2  
AI can be practical in diagnosing complicated 
neurological disorders like intracerebral 
hemorrhage (ICH) and cerebral aneurysms. 

AI uses ML and DL algorithms that are more 
efficient than radiologists in detecting intracranial 
aneurysms (IAs) and anticipating their extent 
using computed tomography (CT) angiograms and 
non-contrast CT.7,8 

IAs are relatively common, occurring in 
approximately 4% of the population.9 IAs can be 
classified into four types: saccular, fusiform, 
dissecting, and mycotic. Saccular aneurysms 
account for 90% of all IAs.10 Most aneurysms do 
not cause any symptoms and may not rupture, but 
they can expand unpredictably and always carry a 
risk of rupture.11 In some cases, an aneurysm may 
cause symptoms due to its mass effect.9  

If an aneurysm ruptures, it can result in a 
subarachnoid hemorrhage, which has a high 
mortality rate and significant disease burden.9,12 
Therefore, accurate and early detection of IAs in 
clinical practice is crucial.13 The size and location of 
an aneurysm affect its rupture risk.14 A 1998 study 
called the International Study of Unruptured 



 
 

 

Intracranial Aneurysms (ISUIA) found that for 
patients with aneurysms smaller than 10 mm and 
no prior SAH, the annual risk of rupture was 
0.05%. For aneurysms larger than 10 mm, the risk 
was 1% per year. Study data from 2003 showed a 
0% and 2.5% five-year rupture risk for small 
aneurysms in the anterior and posterior 
circulation, respectively.15 

To diagnose and monitor IAs, various imaging 
techniques are used, including intra-arterial  
digital subtraction angiography (IADSA), which is 
the gold standard for diagnosis of cerebral 
aneurysms, computed tomography angiography 
(CTA), magnetic resonance angiography (MRA), 
and transcranial Doppler ultrasonography.9 The 
detection rate of asymptomatic unruptured 
intracranial aneurysms (UIAs) has remarkably 
increased over the past 15 years. This coincides with 
increased CTA/MRA imaging.16 Developing more 
precise imaging modalities is crucial for assessing 
the risk of UIA rupture and improving conservative 
treatment options, such as medication.16,17 

Artificial intelligence (AI)-based algorithms can 
enhance the detection rate early and minimize 
intra- and inter-rater variability.18 A CNN is a type 
of DL architecture which can aid clinicians in 
diagnosing IAs with high sensitivity. It has been 
shown to improve clinicians’ performance by 
providing dependable and accurate predictions, 
thereby optimizing patient care.12 Our objective in 
this scoping review was to assess the effectiveness 
of DL algorithms in detecting IAs and their 
subsequent neurosurgical outcomes. 

Research Question: “How have DL algorithms 
been applied in the detection of IAs and the 
prediction of neurosurgical outcomes across diverse 
clinical populations and imaging contexts?” 
PCC Framework 

Population: Patients with diagnosed or 
suspected IAs 

Concept: Application of DL algorithms 
Context: Diagnostic imaging and neurosurgical 

outcome prediction in clinical and experimental 
settings 

Materials and Methods 

This review was conducted in accordance with the 
PRISMA-ScR (Preferred Reporting Items for 
Systematic Reviews and Meta-Analyses extension 
for Scoping Reviews) guidelines.19 

Given the heterogeneity in study designs, 
imaging modalities, and model architectures 
applied in the domain of DL for IA detection, a 
scoping review was deemed more appropriate 

than a systematic review. Scoping reviews allow 
for mapping the breadth of evidence, identifying 
key concepts, and clarifying working definitions 
and gaps in research.20 This approach aligns with 
the updated methodological guidance by the Joanna 
Briggs Institute (JBI) for conducting evidence 
synthesis in complex and emerging fields. 

Search strategy: A comprehensive literature 
search was conducted across PubMed, Web of 
Science, and Scopus up to August 2023. The 
strategy incorporated a combination of controlled 
vocabulary (e.g., MeSH terms) and free-text terms 
related to "deep learning," "intracranial aneurysm," 
and "cerebral aneurysm." The full search strategies 
used for each database are detailed in table 1. The 
reference lists of included articles were also 
manually screened to identify additional eligible 
studies. Duplicate records were removed using 
EndNote, and screening was performed using the 
Rayyan platform. 

Eligibility criteria: This scoping review 
included original research articles that reported on 
the application of DL algorithms for the detection, 
segmentation, risk prediction, or neurosurgical 
outcome assessment of IAs. Eligible studies 
involved human subjects with diagnosed or 
suspected IAs and utilized radiological imaging 
modalities such as CT, CTA, magnetic resonance 
imaging (MRI), MRA, or digital subtraction 
angiography (DSA). We included studies employing 
DL models, such as CNNs, artificial neural  
networks (ANNs), and other advanced architectures, 
provided they reported at least one quantitative 
performance metric—such as sensitivity, specificity, 
accuracy, AUC, or Dice coefficient—and conducted 
any form of model validation. 

We included retrospective, prospective, 
diagnostic, and experimental studies published  
in English with full-text availability. Studies were 
excluded if they were preclinical or non-human 
studies, review articles, editorials, case reports, 
conference abstracts, or methodological 
commentaries without original data. Additionally, 
studies were excluded if they did not utilize DL 
methods or failed to report any measurable 
outcomes related to model performance or clinical 
applicability. Articles lacking accessible full texts 
or published in languages other than English were 
also excluded. 

Study selection and data extraction: All 
identified articles were imported into EndNote for 
deduplication and, then, uploaded to Rayyan, a 
web-based tool designed to facilitate systematic 
review screening. 

 



 
 

 

Table 1. Curated search strategies for each chosen database 

Database Search strategy 

PubMed ("Deep Learning"[tiab] OR "hierarchical learning"[tiab] OR "deep machine learning"[tiab] OR "deep 

structured learning"[tiab] OR "machine learning"[tiab] OR "reinforcement learning"[tiab] OR 

"supervised learning"[tiab] OR "unsupervised learning"[tiab] OR "action-based learning"[tiab] OR 

"actor-critic methods"[tiab] OR "actual learning"[tiab] OR "adversarial training"[tiab] OR "algorithmic 

learning"[tiab] OR "apprenticeship learning"[tiab] OR "artificial neural network"[tiab] OR "artificial 

neural network*"[tiab] OR "autoencoders"[tiab] OR "automated learning"[tiab] OR 

"backpropagation"[tiab] OR "bayesian network*"[tiab] OR "bayesian optimization"[tiab] OR 

"computational intelligence paradigm"[tiab] OR "computer vision"[tiab] OR "computer-based 

learning"[tiab] OR "convolutional neural network*"[tiab] OR "data-driven learning"[tiab] OR "Deep 

Learning"[Mesh] OR "Machine Learning"[Mesh] OR "Supervised Machine Learning"[Mesh] OR 

"Unsupervised Machine Learning"[Mesh] OR "Artificial Intelligence"[Mesh] OR "Neural Networks, 

Computer"[Mesh]) AND ("Intracranial Aneurysm"[tiab] OR "Intracranial Aneurysm*"[tiab] OR 

"cerebral aneurysm"[tiab] OR "cerebral aneurysm*"[tiab]  

WOS ((((((((((((((((((((((((((((((((((((((TS=("Deep Learning")) OR TS=("hierarchical learning")) OR 

TS=("deep machine learning")) OR TS=("deep structured learning")) OR TS=("machine learning")) OR 

TS=("reinforcement learning")) OR TS=("supervised learning")) OR TS=("unsupervised learning")) OR 

TS=("action-based learning")) OR TS=("actor-critic methods")) OR TS=("actual learning")) OR 

TS=("adversarial training")) OR TS=("algorithmic learning")) OR TS=("apprenticeship learning")) OR 

TS=("artificial neural network")) OR TS=("artificial neural network*")) OR TS=("auto encoders")) OR 

TS=("automated learning")) OR TS=("back propagation")) OR TS=("bayesian network*")) OR 

TS=("bayesian optimization")) OR TS=("computational intelligence paradigm")) OR TS=("computer 

vision")) OR TS=("computer-based learning")) OR TS=("convolutional neural network*")) OR 

TS=("data-driven learning")) AND TS=("Intracranial Aneurysm")) OR TS=("Intracranial Aneurysm*")) 

OR TS=("cerebral aneurysm")) OR TS=("cerebral aneurysm*")) OR TS=("brain aneurysm")) OR 

TS=("brain aneurysm*")) 

Scopus ( TITLE-ABS-KEY ( "Deep Learning" ) OR TITLE-ABS-KEY ( "hierarchical learning" ) OR TITLE-

ABS-KEY ( "deep machine learning" ) OR TITLE-ABS-KEY ( "deep structured learning" ) OR TITLE-

ABS-KEY ( "machine learning" ) OR TITLE-ABS-KEY ( "reinforcement learning" ) OR TITLE-ABS-

KEY ( "supervised learning" ) OR TITLE-ABS-KEY ( "unsupervised learning" ) OR TITLE-ABS-KEY 

( "action-based learning" ) OR TITLE-ABS-KEY ( "actor-critic methods" ) OR TITLE-ABS-KEY ( 

"actual learning" ) OR TITLE-ABS-KEY ( "adversarial training" ) OR TITLE-ABS-KEY ( "algorithmic 

learning" ) OR TITLE-ABS-KEY ( "apprenticeship learning" ) OR TITLE-ABS-KEY ( "artificial neural 

network" ) OR TITLE-ABS-KEY ( "artificial neural network*" ) OR TITLE-ABS-KEY ( "auto 

encoders" ) OR TITLE-ABS-KEY ( "automated learning" ) OR TITLE-ABS-KEY ( "back propagations" 

) OR TITLE-ABS-KEY ( "bayesian network*" ) OR TITLE-ABS-KEY ( "bayesian optimization" ) OR 

TITLE-ABS-KEY ( "computational intelligence paradigm" ) OR TITLE-ABS-KEY ( "computer vision" 

) OR TITLE-ABS-KEY ( "computer-based learning" ) OR TITLE-ABS-KEY ( "convolutional neural 

network*" ) OR TITLE-ABS-KEY ( "data-driven learning" ) AND ( TITLE-ABS-KEY ( "Intracranial 

Aneurysm" ) OR TITLE-ABS-KEY ( "Intracranial Aneurysm*" ) OR TITLE-ABS-KEY ( "cerebral 

aneurysm" ) OR TITLE-ABS-KEY ( "cerebral aneurysm*" ) OR TITLE-ABS-KEY ( "brain aneurysm" ) 

OR TITLE-ABS-KEY ( "brain aneurysm*" ) 

 
Two independent reviewers screened titles and 

abstracts against the eligibility criteria. Full texts of 
potentially relevant studies were subsequently 
retrieved and reviewed in detail for inclusion. 
Discrepancies in study selection were resolved 
through discussion between the two reviewers, 
and a third reviewer was consulted when 
consensus could not be reached. Inter-rater 
agreement during the initial screening phase was 
measured using Cohen’s kappa coefficient to 
ensure consistency in study selection. 

For data extraction, a standardized charting 

form was developed a priori and piloted on a 
subset of included studies to ensure clarity and 
comprehensiveness. This form included the 
following variables: first author, year of 
publication, country or region, study design, 
sample size, imaging modality, aneurysm 
characteristics (location, size, type), type of DL 
architecture used, data preprocessing methods, 
model validation approach (internal or external), 
performance metrics (e.g., sensitivity, specificity, 
AUC), and primary outcomes related to detection 
accuracy or clinical utility. Data extraction was 



 
 

 

conducted independently by two reviewers.  
Any discrepancies in data abstraction were 
resolved through discussion, and if necessary, 
adjudicated by a third reviewer to ensure data 
accuracy and reliability. 

Quality assessment: Quality assessment  
was performed for each included study using the 
JBI critical appraisal tools, with the version 
selected according to the study design. For 
diagnostic accuracy studies, the JBI Critical 
Appraisal Checklist for Diagnostic Test Accuracy 
Studies was applied. For cohort and cross-sectional 
studies, the JBI Checklist for Analytical Cross 
Sectional Studies and the JBI Checklist for Cohort 
Studies were used as appropriate. Two reviewers 
assessed each study independently, with 
discrepancies resolved by consensus. 

Thematic analysis approach: To synthesize the 
heterogeneity of study objectives, methodologies, 
and outcomes, we conducted a thematic analysis of 
the included studies. Themes were derived 
inductively, based on patterns observed during 
data extraction and synthesis, rather than being 
predefined. Two reviewers independently 
examined the extracted study variables—such as 
model architecture, clinical application, validation 
strategies, and imaging modality—and grouped 
them into emergent thematic categories. 
Discrepancies in theme assignment were resolved 
through discussion, and consensus was reached in 
all cases. No formal coding software was used; 
however, the process was guided by principles of 
qualitative content analysis and aimed to achieve 
thematic saturation. The final set of themes—
encompassing clinical applications, model 
architectures, validation rigor, imaging inputs, 
geographic distribution, performance reporting, 
and focus on rupture status—was reviewed by a 
third senior reviewer to ensure conceptual clarity 
and coherence with the review’s aims. 

Data synthesis and visualization: To provide a 
comprehensive overview of the evidence 
landscape, we conducted several quantitative and 
thematic syntheses of the extracted data. Following 
data extraction, all study-level variables—
including model architecture, clinical application, 
country of origin, and performance metrics—were 
coded in a structured spreadsheet and 
independently verified for accuracy. 

Thematic mapping was performed to 
categorize each study according to its primary DL 
application domain (e.g., detection/segmentation, 
rupture risk prediction, treatment outcome 

prediction, or EMR/NLP-based identification). 
This enabled the creation of a thematic evidence 
map, visualized as a matrix, which illustrates the 
breadth and concentration of research activity 
across key clinical domains. 

To examine global research distribution, we 
recorded the country of origin for each study based 
on first or corresponding author affiliations. 
Multinational collaborations were attributed to all 
participating countries. The frequency of studies 
per country was then visualized on a world map 
(bubble map), with bubble size reflecting the total 
number of included studies from each country, 
thereby highlighting geographic disparities and 
research clusters. 

For methodological benchmarking, we further 
cross-tabulated the model architecture (e.g.,  
CNN-based, hybrid ML/DL, ANN/DNN, or 
NLP) against the principal clinical application of 
each study. This was visualized as a stacked bar 
chart, illustrating how different DL architectures 
are distributed across the major clinical tasks 
addressed in the literature. 

All visualizations were generated using Python 
(matplotlib, seaborn, Basemap, and pandas libraries) 
based on the manually curated extraction table. 
These figures are presented in the results section to 
facilitate transparent comparison and thematic and 
geographic research gaps identification. 

Results 

Study characteristics and geographic distribution: 
This scoping review included 42 studies published 
between 2011 and 2023, encompassing a broad 
range of study designs, including retrospective 
analyses, cross-sectional studies, diagnostic 
investigations, prospective cohorts, and 
translational projects. The majority of the included 
studies were retrospective, and most were 
conducted in China, followed by the United  
States, South Korea, Germany, and Japan (Table 2). 
Collectively, the studies represented data from 
over 10000 patients with confirmed or suspected 
IAs, reflecting a substantial and growing global 
interest in leveraging artificial intelligence for 
neurovascular diagnostics (Figures 1 and 2). 

Quality assessment results: The overall 
methodological quality of the included studies  
was variable. While most studies met the majority 
of relevant JBI criteria, frequent limitations 
included lack of external validation, absence of 
control groups, and lack of reporting of patient 
selection or blinding. 



 

 
 

 

 

Table 2. Summary findings of studies included in this scoping review (Part I) 

Author Country Type of 

study 

Population DL model Outcome Conclusion 

Chen  
et al.21 

China Translational 75 Intracranial 
aneurysm patients 
37 control samples 

The study employed ML to identify the 
diagnostic significance of key genes 

related to IA 

Both the high mitochondrial 
dysfunction group and the high 

necroptosis group had increased levels 
of mitochondrial pathways, necroptosis 

pathways and immune pathways. 
The upregulation of mitochondria-
induced necroptosis emerges as a 

potential and novel target for 
predictive diagnosis. 

Involvement of 
mitochondria-induced 

necroptosis in the formation 
of IAs was shown. 

Feng  
et al.22 

China Cross-
Sectional 

Training set: 898 
patients 

Test set: 253 
patients 

A three-dimensional CNN was used to 
automatically perform aneurysm 

detection, segmentation, and 
morphological feature extraction. 

Following the process of dimensionality 
reduction, three classification models 

were developed and assessed using the 
area under the receiver operating 

characteristic curve: SVM, RF, and MLP 

The method found 13 features 
associated with aneurysm rupture. 

The proposed method had 
high diagnostic efficiency 

in identifying between 
ruptured and unruptured 

aneurysms. 

Ham  
et al.23 

South 
Korea 

Retrospective Internal validation: 
154 patients 

External validation: 
113 patients 

CNN with 3D TOF‐MRA High adequate performance of the 
proposed method in aneurysm 

segmentation was shown. 

Utilizing 3D patches in 
brain 3D TOF-MRA, 

enables rapid and accurate 
aneurysm detection, 

supporting quick diagnosis. 
Jiang  
et al.24 

USA, 
China 

Retrospective Training set: 102 
patients 

Test set: 10 patients 

Computational fluid dynamics 
simulations and geometrical analyses 

were conducted, and 3D velocity vector 
fields within the IA dome were processed 

for velocity-informatics. Four ML 
methods were employed (SVM, RF, 

generalized linear model, and GLM with 
Lasso or elastic net regularization) to 

evaluate the effectiveness of the proposed 
velocity-informatics. 

The prediction was improved with 
velocity-informatics metrics. 

Including velocity-
informatics from 

aneurismal velocity data 
can enhance the overall 

rupture status 
characterization of an IA. 

Liu  
et al.25 

China Retrospective Training set: 80 
patients 

Test set: 10 patients 

The study utilizes the DeepMedic 
platform, employing a 3D CNN 

architecture for automatic segmentation 
and detection of IAs from CTA images. 

The DeepMedic platform's DL 
architecture, which uses a 3D CNN 
model, can segment and detect IAs 

from CTA images with high 
sensitivity and reliability. 

The 3D CNN system  
shows accurate intracranial 

aneurysm detection and 
segmentation from  

CTA images. 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Patel  
et al.26 

USA Retrospective Training set: 27 
Validation: 30 

Test set: 20 

A DL model (3D DeepMedic) utilized  
for cerebrovasculature segmentation  

from CTA 

The DeepMedic model successfully 
delineated all IAs and showed lower 

error rates for IA morphometrics 
compared to human raters. 

The results demonstrate the ability  
of CTA scans to produce precise 

visualizations of cerebral vasculature 
and abnormalities, including IA. 

Architecture performed 
exceptionally well in the 
segmentation of cerebral 

vessels and IA 

Shao  
et al.27 

Australi
a 

- - The method comprises two stages: 
unsupervised learning and downstream 
tasks. In the first stage, augmentation is 

applied to each point cloud, creating pairs 
of augmented samples with differing 

poses and in the second stage, the trained 
model's unsupervised representations are 

concatenated and used as input for 
downstream tasks to assess the 

effectiveness of unsupervised learning. 

The unsupervised method 
demonstrates comparable or superior 

performance compared to state-of-the-
art supervised techniques, particularly 

excelling in the detection of 
aneurysmal vessels. 

Unsupervised 
representation learning 

method was effective in the 
classification and 

segmentation of 3D IAs. 

Wang  
et al.13 

China Retrospective Training set: 1110 
patients 

Internal validation: 
139  patients 

Test set:134 patients 

The DAResUNet network, employed for 
training, utilizes a 3D-CNN with an 

encoder-decoder architecture similar to 
3D-U-Net. 

The multiphase analysis demonstrated 
higher sensitivity compared to the 
single-phase analysis in internal 
validation, test, and independent 

validation data. 

Automated detection of IAs 
with high sensitivity was 

made possible using a 
multiphase fusion DL 

model with automatic phase 
selection. 

Allgaier 
et al.28 

German
y 

- No patients were 
included. There 

were 4 individuals 
who performed a 

specific type of VR. 

The work simulation focuses on 
craniotomy and head placement. This 

study chose to create a virtual OR and use 
a VR HMD in order to create a more 
immersive experience than existing 

simulations that use haptic devices and 
stationary stereoscopic displays. 

Craniotomy was generally accepted 
but could benefit from improvements 
in hand and arm positioning and the 

ability to mill the sphenoid bone. 

The provision of a VR 
system for craniotomy, 

utilizing an HMD to create 
an immersive training 
experience, is shown. 

Lei and 
Yang29 

China Diagnostic 40 Subjects This study introduces 2 models for 
diagnosing IAs, the first model is a 3D U-

Net algorithm designed to quickly 
diagnose and label potential intracranial 

aneurysm locations in 3D TOF MRA 
image sequences and the second model is 

a 3D CNN for intracranial aneurysm 
classification with a simple structure  

to avoid overfitting. 

Both proposed methods were able to 
locate and detect aneurysm 

successfully with U-Net’s better 
performance in diagnosing and 3D 

CNN’s better performance in 
positioning. 

The study employed DL, 
specifically the U-Net and 
3D CNN network models, 

to automatically label 
intracranial aneurysm MRA 

images. With the U-Net 
algorithm showing 

agreement with manual 
labeling. 



 
 

 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Li  
et al.30 

China Retrospective Training set: 120 
patients 

Test set: 107 
patients 

- Model A+B demonstrated a slightly 
higher AUC than individual models, 

while Model A+C did not show a 
notable improvement. 

Combining radiomics and traditional 
morphological features proved 

effective in identifying intracranial 
aneurysm instability. 

Relying solely on Radiomics-derived 
morphological features is not 
recommended. Notably, the 

Radiomics-based models did not 
outperform the model using traditional 

morphological features 

Combining radiomics and 
traditional morphological 

features proved effective in 
identifying intracranial 
aneurysm instability. 

Tian  
et al.31 

China Retrospective Control group: 393 
Complication 

Group: 48 

Three machine learning algorithms 
(ANN, RF, and LR) were trained on the 

expanded training set using ten-fold 
cross-validation and grid search for 

hyperparameter optimization. 

With ANN showing the best 
performance among other algorithms, 
this study found significant features 
for the prediction of periprocedural 

complications. 

Machine learning 
algorithms may accurately 

predict periprocedural 
problems. 

Wu  
et al.32 

China  Training set: 1205 
CTA images 

Test set: 303 CTA 
images 

The study utilized a cascade model for 
aneurysm detection, initially employing a 

fine-tuned feature pyramid network 
(FPN) for candidate detection. Machine 
learning and deep learning-based rupture 
classification methods were employed to 

distinguish between ruptured and 
unruptured aneurysms. 

The findings suggest the feasibility of 
the pipeline for potential clinical use, 

aiding radiologists in aneurysm 
detection and the classification of 

ruptured and unruptured aneurysms. 

Multichannel information 
can improve the 

performance of aneurysm 
detection. 

Kim  
et al.33 

Korea Retrospective 343 Patients Explainable artificial intelligence (XAI) 
was used to analyze the contribution of 

risk factors on the development of CAV. 

In the proposed model, the 
relationship between aneurysm size, 

age, and CAV in individuals with 
aSAH was quantitatively examined. 

Aneurysm size and age 
were identified as the most 

significant influencers. 

Ou  
et al.34 

China Prospective 182 Patients Some traditional ML algorithms like 
SVM, K-Nearest Neighbors, Decision 

Tree, Artificial Neural Network, RF, and 
Naïve Bayes were used. Also, the 

automated machine learning named 
TPOT was used. 

Aneurysm size, use of SAC, and 
posterior circulation were significant 
factors in predicting recanalization. 

The AutoML-derived model 
outperformed other models. 

The performance of autoML might 
outperform that of conventional 

statistical and manually constructed 
machine learning models. 

By demonstrating that the 
AutoML-derived model 

accurately predicts 
treatment outcomes, the 

study established the 
viability of employing 
AutoML for aneurysm 

treatment outcome 
prediction. 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Pennig  
et al.35 

German
y 

Retrospective Training set: 68 
patients 

Test set: 104 
patients 

Three 3D CNNs based on DeepMedic 
were utilized in the study, namely  

DLM-Orig, DLM-Vess, and DLM-LDim, 
each trained on CTA datasets  

with distinct inputs. 

The statistical analysis showed a 
significant improvement with  

DLM assistance. 
Results imply that incorporating deep 

learning assistance might be a 
beneficial addition that improves  

the precision of aneurysm 
identification in patients with aSAH. 

The DLM considerably 
increased radiologists' 
aneurysm detection in 
patients with aSAH, 

particularly for secondary 
aneurysms. 

Afzal  
et al.36 

USA - - The proposed Biomed-Summarizer 
introduces a novel framework that 

combines a prognosis quality recognition 
model with a clinical context-aware 

model for intelligent and context-enabled 
summarization of biomedical text. It 

employs a DNN for quality recognition,  
a bidirectional long-short term memory 

recurrent neural network for clinical 
context awareness, and calculates 

similarity between query and PICO  
text sequences. 

Multiclass classifier had better 
performance than traditional machine-

learning in classifying categories. 

Evaluation results indicate 
superior performance 
compared to existing 

approaches. 

Chen  
et al.37 

China Retrospective Training set:  
807 patients 

Internal validation: 
200 patients 

External validation: 
108 patients 

With the aim to predict the individual 
rupture status of UIAs, models based on 

traditional LR and ML algorithms 
combining clinical, morphological, and 
hemodynamic information are built and, 

then, tested in internal and external 
validation datasets. 

The study indicates varying 
performance for different models 

across different datasets in  
predicting the risk of rupture  

related to aneurysms. 
In prediction models integrating 

clinical, aneurysm morphological, and 
hemodynamic characteristics, ML 

techniques did not outperform 
traditional LR in determining the 

rupture state of UIAs. 

The models' ability to make 
predictions is significantly 

influenced by 
hemodynamic factors. 

Chen  
et al.38 

China Diagnostic Training dataset :  
76 patients 

Internal test dataset: 
20 patients 

External test 
dataset: 35 patients 

The paper introduced a CAD system 
designed for cerebral aneurysms in TOF-
MRA. The system offers clinicians a fully 
automated process, generating (1) a three-

dimensional mesh model of the 
intracranial artery for hemodynamic 

analysis and (2) identification of 
suspected aneurysm areas using an FCN-

based network. 

According to the proposed method’s 
results in the internal and external test, 

the method has the potential to  
detect aneurysm. 

There is potential for routine physical 
examinations to screen for aneurysms 

using this technique. 

Using contrast-unenhanced 
time-of-flight MRA 

images, the proposed 
computer-assisted detection 
system may locate possible 
aneurysm sites on its own. 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Detmer 
et al.39 

USA, 
Japan, 

Colombi
a 

 Training set:  
1061 patients 

External validation:  
203 patients 

This study compared alternative ML 
classifiers for aneurysm rupture status 

discrimination to a previously constructed 
aneurysm rupture logistic regression 

probability model (LRM). 

Despite variations in rankings, 
statistical tests did not find significant 

differences in variable importance 
among the classifiers. 

Additional data, such as those  
relevant to the aneurysm wall, may  

be required in order to further  
enhance the predictions. 

The LRM demonstrated a 
comparable level of 

performance to other ML 
classifiers, indicating its 
potential for assessing 

aneurysm rupture. 

Duan 
et al.40 

Japan Diagnostic 4 ICA Patients and 
11 Healthy people 

Deep Learning 
This study designed a mapping  
function by combining a U-net  

model with a single convolution. 

DL-MRA was comparable to time-of-
flight MRA (TOF-MRA), and both 

were superior to linear-MRA. 

MRA generated through 
DL from 3D synthetic MRI 
data effectively visualized 
major intracranial arteries, 

comparable to time-of-
flight MRA (TOF-MRA). 

Jin  
et al.41 

China Retrospective Model development 
set: 347 patients 

Test set:  
146 patients 

The network structure is based on a 
general U-shaped design for medical 

image segmentation and detection. The 
network includes a fully convolutional 
technique to detect aneurysms in high-

resolution DSA frames. 

The system was shown to be highly 
sensitive in identifying cerebral 

aneurysms. 

DNN techniques have been 
successfully applied to the 

automatic segmentation and 
detection of aneurysms in 

2D DSA pictures. 

Lv  
et al.42 

China Cross-
Sectional 

65 Patients The models include RFs, Neural 
Networks, Generalized Linear Model, 

Partial Least Squares, Gradient Boosting 
Machines, SVM, Linear Discriminant 

Analysis, Mixture Discriminant Analysis, 
and K Nearest Neighbors. 

Gradient boosting had the best 
performance among machine learning 

models in predicting wall 
enhancement. 

Size ratio, PHASES score, 
and mean wall shear stress 
at the aneurysm wall were 

identified as crucial 
predictors for wall 

enhancement in cerebral 
aneurysms using a machine 

learning approach. 
Ou  
et al.43 

China Retrospective 374 Patients Machine learning methods, including 
SVM, artificial neural network, and 
XGBoost, along with conventional 

logistic regression, were used to create 
prediction models. 

XGBoost had the best performance 
and key predictors for rupture 
included location, size ratio,  

and triglyceride level. 
The results point to the possibility  

of improving the treatment of 
unruptured aneurysms 

Utilizing a machine 
learning model to assess the 
risk of aneurysm rupture is 

feasible. 

Podgorsak 
et al.44 

USA Retrospective Training set:  
250 DSA Images 

Test set: 100  
DSA Images 

A CNN architecture was implemented 
using Keras for semantic segmentation. 

In parametric imaging procedures, 
CNN segmentation of aneurysms  
and the surrounding vasculature  

from DSA images is a non-inferior 
method compared to manual 

contouring of aneurysms. 

CNN can effectively and 
accurately segment saccular 
aneurysms and surrounding 

vasculature from DSA 
images 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Poppenberg  

et al.45 

USA Translational Training set: 94 

subjects 

Test set: 40 subjects 

The study utilized LASSO, K-Nearest 

Neighbors, RF, and SVMs. 

In the study, feature selection using 

LASSO identified 37 IA-associated 

transcripts in the training cohort. 

The RF model outperformed others in 

both training and testing cohorts. 

Importantly, comorbidities and 

demographics did not significantly 

impact IA prediction. 

Predictive mode 

enhancements were done 

by employing LASSO for 

feature selection and robust 

machine learning 

techniques. 

Rajabzadeh-

Oghaz  

et al.46 

USA Retrospective 47 Patients The study developed a rupture 

discriminator model for IAs, identifying 3 

significant features: aneurysm size ratio, 

time-averaged normalized WSS, and OSI. 

The RRS is not a predictor of rupture 

but serves as a data-driven model 

assessing the similarity of UIAs to 

ruptured ones in morphology and 

hemodynamics. 

The study underscores 

RRS's clinical utility as an 

adjunctive tool for 

managing UIAs in  

real-world scenarios. 

Shi  

et al.47 

China Retrospective Internal Validation 

sets: 2355 subjects 

(There are 5 separate 

cohorts in this group) 

External Validation 

sets: 674 subjects 

(There are 3 separate 

cohorts in this group) 

The study introduced DAResUNet, a 3D 

CNN, designed for the segmentation of 

IAs from digital subtraction CTA images. 

When compared to human experts,  

the suggested DL-based model for 

automated intracranial aneurysm 

diagnosis and segmentation  

showed higher patient-level and 

lesion-level sensitivity. 

The proposed DL-based 

model for automated 

detection and segmentation 

of IAs demonstrated higher 

patient-level sensitivity and 

lesion-level sensitivity 

compared to human experts, 

suggesting its potential to 

reduce their workload. 

Bhurwani  

et al.48 

USA Retrospective 163 Patients A DNN was trained to predict the  

binary outcome of IA occlusion 

(occluded/unoccluded). 

The results indicate the possibility  

to forecast the outcome of an 

intervention in real time during 

surgery by comparing API 

characteristics with blood flow. 

API data was analyzed  

with DNNs, suggesting the 

potential to correlate API 

parameters with blood  

flow and predict 

intervention success in real-

time during surgery. 

Wu  

et al.49 

USA Retrospective Training set:  

436 patients 

Validation set:  

50 patients 

Internal testing:  

60 patients 

Testing:  

670 patients 

A two-step model was developed for  

IA detection: a 3D RPN to locate IAs and 

3D DenseNets for classification. DPN 

was used for the detection step, and 

DenseNet for probability prediction  

at suspicious locations. 

Compared to an available model,  

the new model showed statistically 

higher patient-level accuracy, 

sensitivity, and specificity. 

CADIA displayed 

commendable diagnostic 

performance for detecting 

and localizing IAs. 

 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Xia  
et al.50 

China Retrospective Training set:  
485 patients 

Internal testing:  
122 patients 

External Validation: 
202 patients 

The study utilized a RF machine learning 
algorithm for predicting clinical outcomes 

after the rupture of ACoA aneurysms. 

Patient factors such as age, ventilated 
breathing status, WFNS grade, and 

Fisher grade are identified as 
significant predictors of poor 
outcomes after the rupture of  

ACoA aneurysms. 

Poor outcomes are found to 
be significantly associated 
with patient age, breathing 
status, WFNS grade, and 

Fisher grade, while 
morphological parameters 

of the aneurysm are not 
independent predictors. 

Yang  
et al.51 

  103 Patients The study introduced a surface-based DL 
framework that combines human 

intervention with automated processes. 
The system samples 3D vessel surface 

fragments, classifies them using the 
PointNet++ DL network to distinguish 
those with and without aneurysms, and 

applies surface segmentation (SO-Net) to 
fragments containing aneurysms. 

While there are still issues with  
small aneurysms, the surface-based 

segmentation method performs better 
than the volume-based approach in 

most situations. 
Overall, the method improves 

segmentation accuracy by efficiently 
filtering out non-aneurysmal 

components. 

Employing a two-step 
approach, involving 

classification and 
segmentation using 

advanced point-based DL 
networks, the proposed 
framework outperforms 
existing volume-based 

methods. 
Zeng  
et al.52 

China  300 original 
sequences with 263 

aneurysms 

This paper utilizes a DL approach for 
intracranial aneurysm detection in  
3D-RA, employing a SIF method. 

This approach allows training on  
a 2D CNN directly, avoiding the 

computationally expensive 3D-CNN, 
by leveraging time series with evident 

frame-to-frame correlation. The 
results demonstrate the practicality 
and effectiveness of the SIF feature. 

Evaluation revealed 
effective improvement in 

aneurysm detection 
accuracy with SIF features, 

but careful consideration  
of the upper limit of scale is 

necessary to avoid 
introducing redundant 

information. 
Zhu  
et al.53 

China Retrospective 1897 ICA Three machine learning models-RF, 
SVM, and feedforward ANN-were 

developed for assessing IA stability. 

Machine learning models 
outperformed statistical LR and the 
PHASES score and resulted in the 
potential of machine learning to 

enhance clinical decision-making for 
IA stability assessment. 

Machine learning models 
surpassed traditional 

statistical methods (LR) 
and the PHASES score in 

assessing intracranial 
aneurysm stability. 

Duan  
et al.54 

China Diagnostic Training set:  
241 subjects 

Test set: 40 subjects 

In this study, a two-stage CNN-based 
detection network was developed to 

implement the automatic detection of 
intracranial aneurysm on DSA images. 

The proposed method had better 
accuracy than classical DIP. 

CAD architecture is able to 
help physicians quickly and 

effectively diagnose IAs. 

Hanaoka 
et al.55 

Japan  - Linear SVM was utilized for classifying. Lung nodules and cerebral aneurysms 
were successfully identified using the 

suggested technique. 

Two medical lesion 
identification applications 

demonstrated the high 
general versatility of the 

HoTPiG image feature set. 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part I) (continue) 

Author Country Type of 
study 

Population DL model Outcome Conclusion 

Liu  
et al.56 

China Retrospective 368 ICA The whole Morphology Prediction 
Models were built using general linear 

and ridge regression, and were dubbed the 
GLM model and the ridge model. The 
partial morphology model was created 

using Lasso regression and was given the 
term Lasso model. 

Lasso regression identified flatness as 
the most crucial morphological feature 

for predicting aneurysm stability. 
For unstable aneurysms, spherical 

disproportion was higher in patients 
with hypertension. 

Flatness was identified as a 
key determinant for 
predicting aneurysm 

stability. Machine learning 
models, especially with 

data from multiple centers, 
could enhance the 

predictive accuracy of 
aneurysm stability. 

Liu  
et al.57 

China Retrospective 594 ICA A two-layer feed-forward ANN was 
constructed to predict the rupture risk of 

ACOM aneurysms. 

In training, validation, testing, and 
overall datasets, the ANN 

performance was assessed using ROC 
analysis, which showed strong 
classification abilities for both 

ruptured and unruptured samples. 

The management of 
unruptured ACOM 

aneurysms may be made 
easier by this ANN's good 

performance and useful tool 
for predicting rupture risk 

in ACOM aneurysms. 
Castro  
et al.58 

USA Retrospective 5,589 patients were 
classified as having 

aneurysms, and 
54,952 controls 
were matched to 

those patients. There 
were 300 patients 

for validation. 

Utilizing NLP in conjunction with the 
EMR, patients with cerebral aneurysms 

and their matched controls were 
accurately identified. 

Compared to models that exclusively 
used coded or NLP variables, the 

suggested model performed better. 
The study demonstrates how a 
combination method utilizing  

NLP and ICD codes can correctly 
identify and categorize patients  

with cerebral aneurysms. 

Using NLP and EMR to 
collect a substantial group 
of patients with IAs and 

corresponding controls and 
proposed algorithms has the 
potential to be adapted for 

various diseases. 

Meuschke 
et al.59 

Germany - - - The tool was user-friendly for all 
experts, and they expressed a 

willingness to use it for analyzing 
cerebral stress tensors. 

This study introduced a 
framework for assessing the 

potential rupture risk of 
cerebral aneurysms and aims 
to facilitate the introduction 
of wall stress into clinical 

discussions by offering novel 
glyph visualizations of tensor 

information. 
Haraguchi 
et al.60 

Japan - - A new mechanical coil insertion  
system was developed for the  

single-operator control. 

The developed coil insertion system 
operated smoothly without issues. 

The developed mechanical 
coil insertion system 

demonstrated successful 
endovascular embolization of 
IAs in an in vitro experiment 

without any issues. 
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Author Country Type of 
study 

Population DL model Outcome Conclusion 

Johnson 
et al.61 

USA - Three patient-

specific cerebral 

aneurysm models 

were created. 

The paper introduces an innovative 
method to model weakened cerebral 

aneurysm walls by creating an equivalent 
wall thickness. 

The results show that the use of the 

equivalent wall thickness provides a 

more accurate rupture site prediction 

than utilizing a uniform wall 

thickness. 

A novel approach for 
estimating equivalent wall 

thickness in cerebral 
aneurysm models involves 

parameterizing surfaces and 
deforming a healthy model 

mesh to match an 
aneurysm's shape. 

IAs: Intracranial aneurysms; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; MLP: Multi-layer perceptron; TOF‐MRA: Time‐of‐flight magnetic resonance 

angiography; OR: Operating room; HMD: Head-mounted display; VR: Virtual reality; CAV: Cerebral angiographic vasospasm; HU: Hounsfield units; TPOT: Tree-based Pipeline Optimization; UIAs: 

Unruptured intracranial aneurysms; ML: Machine learning; CAD: Computer-aided diagnosis; FCN: Fully convolutional network; DSA: Digital subtraction angiography; RRS: Rupture risk score; WSS: 

Wall shear stress; OSI: Oscillatory shear index; DNN: Deep neural network; RPN: Region proposal network; DPN: Dual-pass network; ACoA: Anterior communicating artery; WFNS: World Federation 

of Neurosurgical Societies; 3D-RA: 3D-Rotational angiography; SIF: Spatial information fusion; DIP: Digital image processing; CAD: Computer-aided diagnosis; ICA: Internal carotid artery; PCoA: 

Posterior communicating artery; NLP: Natural language processing; EMR: Electronic medical record; DL: Deep learning; MRA: Magnetic resonance angiography; ML: Machine learning 

 
Table 2. Summary findings of studies included in this scoping review (Part II) 

Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Wang  
et al.13 

Moderate 
risk 

- Internal validation: 
0.942 

Test set: 0.970 

- Convert CT angiograms from DICOM to 
numpy matrices; 

Normalize grayscale values using 
DICOM window width and level; 
Preprocess with Dr. Wise-CTA  
for arterial tree extraction and  

vessel naming; 
Extract 3D image patches along  

the arterial vasculature; 
Crop images to 80x80x80 pixels; 

Design patches to cover  
most aneurysms 

Aneurysm type:  
Saccular, Fusiform 

Size: 
< 3 mm: 34n 

3-7 mm: 946n 
7-10 mm: 454n 
> 10 mm: 408n 

Location: ACA, ACoA, MCA, 
PCA, PCoA, ICA, Basilar A, 

Vertebral A, and Others 

Chen  
et al.21 

Moderate 
risk 

- -  - - 

Feng  
et al.22 

Low risk - - Training set 
SVM: 0.86 
RF: 0.85 

MLP: 0.90 
Test set 

SVM: 0.85 
RF: 0.88, 

MLP: 0.86 

- Size: - 
Location: ACA, ICA,  

MCA, PCA 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part II) (continue) 

Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Ham  
et al.23 

Moderate 
risk 

Internal dataset: 0.893 
external datasets: 0.856 

(with a 2:1 ratio of 
normal to aneurysmal 

patches) 

Internal dataset: 0.926 
external datasets: 

0.879 
(with a 2:1 ratio of 

normal to aneurysmal 
patches) 

- Skull‐stripping, signal intensity 
normalization, and N4 bias correction 

Size: Mean size of 2.6 mm in 
Internal Validation group 

Location: - 

Jiang  
et al.24 

Moderate 
risk 

- - SVM:0.86 
GLM: 0.82 

GLMNet: 0.83 
RF: 0.78 

- All aneurysms were  
saccular aneurysms. 

Size: 4-25 mm 
Location: ICA, MCA, ACA 

Liu  
et al.25 

Moderate 
risk 

- 92.3% - Conversion from DICOM to  
NIfTI format; 

Manual segmentation of aneurysms; 
Determination of intracranial  

artery boundaries; 
Image cropping based on  
determined boundaries; 

Normalization of cropped images  
using MATLAB 

Size:  Average diameter  
7.1 mm 

Location: ICA (Anterior 
circulation aneurysm), MCA, 

Posterior circulation aneurysm 

Patel  
et al.26 

Moderate 
risk 

- - - Dataset was first preprocessed to generate 
co-registered, re-sampled, ROIs of the 
major arteries of the circle of Willis, 
which was followed by ground truth 
generation and data normalization. 

Size: 6.01 mm mean 
Location: ICA, MCA, PComA, 

OpthA, AComA 

Shao  
et al.27 

- - - - - - 

Allgaier  
et al.28 

- - - - - - 

Lei and 
Yang29 

 MRA: 100% 
DSA: 86.01% 

MRA: 95.87% 
DSA: 91.46% 

- - - 

Li  
et al.30 

Low risk Model A: 87.3% 
Model B: 73.5% 
Model C: 65.1% 
(Only test set was 

reported) 

Model A: 77.8% 
Model B: 61.1% 
Model C: 41.2% 

(Only test set was 
reported) 

Model A: 0.909 
Model B: 0.739 
Model C: 0.552 

(Only test set was 
reported) 

- Unruptured saccular aneurysm 
Size: median of the maximal 

diameter of the aneurysm  
3.9 mm 

Location: ICA/PCOM,  
AC, PC, MCA 

Tian  
et al.31 

Moderate 
risk 

- - ANN: 0.761 
RF: 0.735 
LR: 0.668 

(Only test set was 
reported) 

- Size: 6.92 mm 
Location: Anterior circulation, 

Posterior circulation, Distal 
aneurysm 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part II) (continue) 

Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Wu  
et al.32 

Moderate 
risk 

- 90% for 1 false 
positive per image 

0.906 Truncate intensities of all CTA  

images between HU 
Resample each CTA image into isotropic 
resolution using B-spline interpolation. 

Size 

Training set (6.2 mm) 

Test set (6.9 mm) 

Location: - 
Kim  
et al.33 

Moderate 
risk 

0.77 0.78 0.88 - Aneurysmal subarachnoid 
hemorrhage (aSAH) 

Size: - 
Location: Ophthalmic A, Distal 
ICA, PCoA, Anterior choroidal 

Artery, ICA bifurcation, M1 (first 
segment of the middle cerebral 
artery), MCA bifurcation, A1 
(first segment of the anterior 

cerebral artery), ACoA, Distal 
ACA, Vertebral A, Posterior 

inferior cerebellar A, Basilar tip 
Ou  
et al.34 

Low risk - 1.000 - Normalization Size: 5.3 mm 
Location: ICA, MCA, ACA  

and AComA, PComA,  
Posterior circulation 

Pennig  
et al.35 

High risk - 85.7% - Brain extraction with SPM8; 

Image standardization and  

intensity normalization; 

Multi-scale vessel enhancement  

filter application; 
Normalization of CTA image and  

vessel enhanced images; 

Size: mean volume 129.2 mm
3

 

Location: AC, ICA, ACA,  

MCA, PC 

Afzal  
et al.36 

High risk - - - - - 

Chen  
et al.37 

Low risk LR: 74.6% 

RF: 81.8% 

MLP: 76.4% 

SVM: 83.6% 
(Only external validation 

numbers is reported.) 

LR: 83.0% 

RF: 69.8% 

MLP: 79.3% 

SVM: 67.9% 
(Only external 

validation numbers is 
reported.) 

LR: 0.886 

RF: 0.871 

MLP: 0.851 

SVM: 0.863 
(Only external 

validation numbers 
is reported.) 

- Size: mean of 5.6 mm 

Location: PCoA, ACoA, ICA, 

MCA and Others 

Detmer  
et al.38 

 0.770-0.925 

(from lowest to  

highest ML) 

0.348-0.758 

(from lowest to 

highest ML) 

MLP: 0.83 

LRM: 0.82 

(Best two MLs) 

- - 
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Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Chen  
et al.39 

Low risk - Internal test dataset: 

94.4% 

External test dataset: 

82.9% 

- - Unruptured cystic aneurysm 
Size: Training dataset 6.86 mm, 
Internal test dataset 6.30 mm, 
External test dataset 6.48 mm 
Locations: ICA, MCA, ACA, 
PCA, Basilar A, Vertebral A 

Duan 
et al.40 

 - - - - Size: 3.7 mm mean 
Location: ACA, MCA, ICA 

Jin  
et al.41 

Moderate 
risk 

- 89.3% - - Size: - 
Location: Sidewall aneurysms, 

Bifurcation aneurysm 
Lv  
et al.42 

Moderate 
risk 

Values ranged from 0.50 
(knn) to 0.75 (gbm  

and glm) 

Values ranged from 
0.73 (mda and 

svmRadial) to 0.91 
(rf, lda and knn) 

Values ranged from 
0.68 (pls) to  
0.98 (gbm) 

R-project library ‘caret’ was used to 
perform the preprocessing steps to center 
(subtracting the mean) and scale (divided 

by the standard deviation) the data. 

- 

Ou  
et al.43 

Moderate 
risk 

XGBoost: 77.0% 

ANN: 78.0% 

SVM: 81.0% 

LR: 83.0% 

PHASES: 64.0% 

XGBoost: 90.9% 

ANN: 74.0% 

SVM: 72.6% 

LR: 72.0% 

PHASES: 79.7% 

XGBoost: 0.881 

ANN: 0.837 

SVM: 0.838 

LR: 0.801 

PHASES: 0.758 

- Size: Unruptured group 3.63  

mm mean 

Ruptured group 4.33 mm mean 

Location: ICA, MCA, ACA, 

PCA, BA, VA, AComA, PComA 
Podgorsak 
et al.44 

Moderate 
risk 

- - - - - 

Poppenberg  

et al.45 

 - - - - - 

Rajabzadeh-

Oghaz  

et al.46 

Moderate 

risk 

- - - - Size: 3.95 mm mean 

Location: ACA, AComA,  

ICA, MCA, PComA, Posterior 

circulation 
Shi  
et al.47 

Moderate 
risk 

Internal cohort 1: 74.7% 
Internal cohort 2: 83.9% 
Internal cohort 3: 85.5% 
Internal cohort 4: 87.9% 
Internal cohort 5: 89.7% 

NBH cohort: 71.1% 
TJ cohort: 71.1% 

LYG cohort: 74.6% 

- - - Size: 
Internal cohort1: 4.3 mm 
Internal cohort 2: 4.8 mm 
Internal cohort 3: 4.2 mm 
Internal cohort 4: 3.5 mm 
Internal cohort 5: 5.1 mm 

NBH cohort: 4.4 mm 
TJ cohort: 5.3 mm 

LYG cohort: 4.4 mm 
Location: MCA, ACoA, ICA, 
PCoA, VBA, CA, ACA, PCA 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part II) (continue) 

Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Bhurwani  
et al.48 

Low risk 0.57 

(Only in Peak Height 

mode is reported) 

0.92 

(Only in Peak Height 

mode is reported) 

- - Size: - 

Location: ICA, ACA, ACoA, 

MCA, PCA, PCoA, VA, BA 
Wu  
et al.49 

Moderate 
risk 

0.564 

(At 1 FPPV) 

0.893 

(At 1 FPPV) 

0.873 - Size: 

(Across all cohorts) 

2.5-2.9 mm: 181 IAs 

3-5 mm: 349 IAs 

5-10 mm: 287 IAs 

≥ 10 mm: 55 IAs 

Locations: ICA, MCA, ACoA, 

PCoA, BA, ACA, PCA 
Xia  
et al.50 

Moderate Internal Test: 82.8% 

External Test: 83.1% 

Internal Test: 78.3% 

External Test: 73.8% 

- - Only Ruptured ACoA aneurysms 

were included. 

Size: 

mm in Good Outcome group 

5.7 mm in Poor Outcome group 
Yang  
et al.51 

- - Sensitivities of the 

aneurysm class of 

five networks are 

73.63%, 81.08%, 

79.49%, 86.11%, and 

80.77%, 

- Four preprocessing approaches A, B, C, 
and D were applied. A has only been 

applied as a necessary step in 
DeepMedic, while B,C, and D, were 

performed as additional masks for the 
skull-stripping of the TOF-MRA images. 

- 

Zeng  
et al.52 

- 98.19% 99.38% - Gamma correction was performed on the 

original image and then its intensity 

stretched or shrank to the right levels. 
Digital subtraction was done to the original 

data by the pre-contrast sequences. 

Size: 2-40 mm 

Location: - 

Zhu  
et al.53 

Low risk RF: 90.9% 

SVM: 88.3% 

ANN: 92.9% 

Classic LR: 88.3% 

PHASES: 95.4% 

RF: 54.4% 

SVM: 61.2% 

ANN: 51.5% 

Classic LR: 33.9% 

PHASES: 9.7% 

RF: 0.850 

SVM: 0.858 

ANN: 0.867 

Classic LR: 0.818 

PHASES: 0.589 

- Size:- 

Location: ICA, MCA, ACA, 

AComA, Posterior circulation, 

PComA 

Duan  
et al.54 

- - - 0.942 - Size: 

< 5.0 mm: 44 

5.0–9.9 mm: 114 

10.0–24.9 mm: 101 

≥ 25.0 mm: 2 

Location: PCoA region of ICA 



 
 

 

Table 2. Summary findings of studies included in this scoping review (Part II) (continue) 

Author Quality of 
evidence 

Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details 

Hanaoka 
et al.55 

- - 80% when the 

number of false 

positives was three 

per case for both 

applications 

- - - 

Liu  
et al.56 

- - - General linear: 

0.856 

Ridge: 0.856 

LASSO: 0.852 

- Size: 4 mm-8 mm 

Location: ACoA, PCoA, 

Posterior Circulation, MCA, ICA 

Liu  
et al.57 

Moderate 
risk 

92.6% 95.0% - - Size: 2.20 mm vessel size in 

unruptured group 

1.94 mm vessel size in ruptured 

group 

Location: Anterior 

Communicating Artery 
Castro  
et al.58 

Low risk - 0.78 0.946 - - 

Meuschke 
et al.59 

- - - - - - 

Haraguchi 
et al.60 

- - - - - - 

Johnson  
et al.61 

- - - - - - 

IAs: Intracranial aneurysms; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; MLP: Multi-layer perceptron; TOF‐MRA: Time‐of‐flight magnetic resonance 

angiography; OR: Operating room; HMD: Head-mounted display; VR: Virtual reality; CAV: Cerebral angiographic vasospasm; HU: Hounsfield units; TPOT: Tree-based Pipeline Optimization; UIAs: 

Unruptured intracranial aneurysms; ML: Machine learning; CAD: Computer-aided diagnosis; FCN: Fully convolutional network; DSA: Digital subtraction angiography; RRS: Rupture risk score; WSS: 

Wall shear stress; OSI: Oscillatory shear index; DNN: Deep neural network; RPN: Region proposal network; DPN: Dual-pass network; ACoA: Anterior communicating artery; WFNS: World Federation 

of Neurosurgical Societies; 3D-RA: 3D-Rotational angiography; SIF: Spatial information fusion; DIP: Digital image processing; CAD: Computer-aided diagnosis; ICA: Internal carotid artery; PCoA: 

Posterior communicating artery; NLP: Natural language processing; EMR: Electronic medical record; DL: Deep learning; MRA: Magnetic resonance angiography; ML: Machine learning 

 
 
 



 

 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1. PRISMA flow diagram of the study selection procedure 

 
Studies classified as “high risk of bias” were 

generally limited to single-center, retrospective 
designs with small samples or unclear inclusion 
criteria. The predominance of moderate to high risk 
of bias among outcome prediction studies in 
particular reduces the certainty of the evidence base 
for neurosurgical outcomes. As a result, conclusions 
regarding the clinical utility and generalizability of 
DL models for post-surgical or prognostic 
applications should be interpreted with caution. 
Risk of bias was less pronounced in larger, multi-

center diagnostic studies, which contributed more 
robust evidence to the review’s principal findings. 

Imaging modalities and preprocessing 
approaches: The most frequently used imaging 
modality was CTA, followed by MRA, DSA, and 
3D rotational angiography. Image preprocessing 
techniques were frequently applied to standardize 
inputs across varying acquisition protocols.  
These included skull stripping, vessel 
enhancement, signal normalization, DICOM-to-
NIfTI conversion, and manual segmentation.  

 

 
Figure 2. Global distribution of deep learning (DL) studies on intracranial aneurysms (IAs) 
This map illustrates the geographic origins of studies included in the present scoping review. The size of each circle corresponds 

to the number of studies affiliated with each country, with text labels indicating the absolute count. Note that the sum of country 

counts exceeds the total number of unique studies (n = 42) because multi-country collaborations are credited for all contributing 

countries. The figure highlights the predominance of research output from China and the United States, and reveals areas with 

limited representation in the global literature. 
 

Identification of studies via databases and registers 

Records identified from 

chosen databases (n = 797) 
Records removed before screening: 

Duplicate records removed (n = 267) Identification 

Records screened (n = 530) Records excluded (n = 465) 

Reports sought for retrieval (n = 65) 
Reports not included due to lack 

of sufficient/relevant information 
in full text screening (n = 24) 

Screening 

Studies included in the review (n = 41) Included 



 
 

 

Some studies employed multi-phase fusion 
techniques to improve input quality and reduce 
noise, particularly in models using volumetric 
CTA data. 

DL architectures and analytical frameworks: 
CNNs were the most widely used architecture, 
applied in over half of the included studies. Three-
dimensional CNN models such as DeepMedic, 
DAResUNet, and U-Net variants were commonly 
implemented for aneurysm detection and 
segmentation tasks, often achieving high levels of 
accuracy and sensitivity. Hybrid models 
combining CNNs with support vector machines 
(SVMs), random forests (RFs), or multilayer 
perceptrons were also explored to enhance 
classification and reduce overfitting. In several 
instances, these combinations demonstrated 
superior diagnostic performance compared to 
models relying solely on DL. A smaller subset of 
studies applied unsupervised learning, AutoML 
pipelines, or reinforcement learning-based 
frameworks, indicating a progressive trend toward 
fully automated and adaptive systems. 

Clinical applications (detection, segmentation, 
and risk stratification): The most common clinical 
application was aneurysm detection and 
segmentation. DL-based models for this purpose 
were evaluated in 24 studies, with many reporting 
sensitivity rates above 90% and AUC values 
ranging from 0.85 to 0.98. Some models, such as the 
one developed by Shi et al., outperformed human 
readers in both patient-level and lesion-level 
sensitivity.47 Segmentation performance was also 
strengthened in studies that employed 3D  
patch-based input, multi-scale feature extraction, 
and false-positive reduction modules. 

Moreover, 13 studies focused on rupture risk 
prediction using DL, often incorporating 
geometric, hemodynamic, and clinical parameters. 
These models frequently outperformed 
conventional risk scoring systems, such as the 
PHASES score, in predicting rupture likelihood. 
For example, Liu et al.57 developed a feedforward 
artificial neural network capable of predicting 
rupture risk in anterior communicating artery 
aneurysms with sensitivity and specificity above 
90%. Other studies, such as those by Feng et al.22 
and Zhu et al.,53 used radiomics-derived 
morphological features in conjunction with DL 
models to assess aneurysm instability, achieving 
comparable or improved predictive performance 
relative to logistic regression. 

DL was applied to outcome prediction 

following surgical or endovascular treatment  
in 8 studies. These models aimed to predict 
periprocedural complications, long-term 
recanalization, and occlusion outcomes. Predictive 
variables included both patient-level features and 
procedure-specific parameters such as aneurysm 
morphology and blood flow dynamics. The study 
by Bhurwani et al. exemplified the use of 
intraoperative data for real-time outcome 
prediction using a deep neural network (DNN) 
trained on angiographic parametric imaging.48 

Natural language processing (NLP) and 
clinical informatics integration: A subset of 
studies extended DL applications to broader 
clinical informatics by incorporating electronic 
medical record (EMR) data and NLP techniques. 
For instance, Castro et al. demonstrated that NLP 
applied to EMRs could effectively identify patients 
with cerebral aneurysms and their matched 
controls with a sensitivity of 94.6%, outperforming 
models based solely on coded variables.58 These 
efforts highlight the potential of DL to support 
automated case detection, large-scale cohort 
construction, and integrated decision support in 
clinical environments. 

Model validation and performance metrics: 
Despite generally strong performance across the 
included studies, validation approaches were often 
limited in rigor. While internal validation was 
conducted in most studies through test set 
separation or cross-validation, only 14 studies 
reported using external validation datasets. Fewer 
than 25% of studies employed independent control 
groups. Reported performance metrics varied but 
were generally favorable. Sensitivity values  
typically ranged between 73% and 99%, with 
specificity values between 54% and 98%. AUC values 
frequently exceeded 0.85, although methodological 
heterogeneity limited direct comparability. 

Variability in aneurysm characteristics and 
predictive inputs: There was notable heterogeneity 
in how aneurysm characteristics were defined  
and incorporated into models. Some studies 
stratified by size, location, or aneurysm type  
(e.g., saccular vs. fusiform), while others included 
mixed cohorts without clear subcategorization. 
Aneurysm sizes across studies ranged from < 3 
mm to > 25 mm, and many studies did not report 
rupture site, wall enhancement, or other 
pathophysiologically relevant features. This 
variability, along with inconsistent inclusion 
criteria and imaging protocols, underscores the 
challenge of synthesizing findings across studies 



 
 

 

and emphasizes the need for standardized 
definitions and reporting. 

Synthesis and emerging trends: The cumulative 
evidence indicates that DL algorithms hold 
considerable promise in advancing the detection, 
classification, and management of IAs. CNN-based 
segmentation models consistently demonstrated 
excellent diagnostic performance, and emerging 
architectures, such as surface-based models and 
attention-enhanced networks, have begun to 
address challenges related to false positives and 
aneurysm localization. The integration of clinical, 
radiomic, and hemodynamic features into DL 
frameworks has further enhanced their predictive 
power, particularly in risk assessment and 
treatment outcome forecasting. 

Nevertheless, critical limitations persist. The 
reliance on institution-specific, non-public  
datasets restricts reproducibility, while the lack of 
external and prospective validation weakens 
generalizability. Few studies reported on model 
explainability or integration within clinical 
workflows, issues that will be crucial for 
regulatory approval and adoption. Ethical 
considerations, including patient data privacy and 
the interpretability of model decisions, were also 
underreported in the current literature. 

Overall, the included studies demonstrate that 
DL technologies are rapidly transforming the 
landscape of neurovascular imaging and risk 
stratification. While current models show high 
diagnostic and predictive accuracy, their 
translation into routine clinical practice will 
require methodological standardization, access to 
multicenter and open datasets, robust external 
validation, and continued development of 
interpretable, clinically aligned algorithms. 

Thematic analysis of included studies: To 
synthesize the diverse applications and 
methodologies of DL across the included 
literature, we conducted a thematic analysis based 
on the extracted study characteristics. Seven key 
thematic categories emerged, reflecting both 
clinical relevance and methodological diversity 
(Figures 3 and 4). 
1. Clinical application domains 

The included studies addressed 4 primary 
clinical applications of DL in the context of IAs, 
detection and segmentation, rupture risk 
prediction, treatment outcome forecasting, and 
automated patient identification using NLP. 
Detection and segmentation were the most 
common focus, observed in more than half of the 

studies. Thirteen studies explored rupture risk 
stratification, while 8 evaluated DL models for 
forecasting outcomes such as procedural 
complications, occlusion success, or recanalization. 
A smaller subset leveraged NLP models in 
conjunction with electronic medical records to 
identify aneurysm cases at scale. 
2. Model architectures and analytical frameworks 

A variety of DL architectures were employed, 
including CNNs, ANNs, DNNs, and AutoML 
pipelines. CNNs were the predominant model 
type, particularly in 3D implementations  
such as DeepMedic, DAResUNet, and U-Net 
variants. Hybrid models that combined DL with 
traditional ML classifiers (e.g., SVMs, and RFs) 
were also common. A few studies explored 
unsupervised learning and reinforcement 
learning, indicating ongoing diversification in 
computational approaches. 
3. Validation strategy and evidence rigor 

Validation approaches varied widely. While most 
studies employed internal validation (e.g., hold-out 
test sets or cross-validation), only 14 conducted 
external validation using independent datasets. 
Furthermore, less than one-quarter of the studies 
incorporated control groups. This heterogeneity in 
methodological rigor reflects differing levels of 
evidence strength and reproducibility. 
4. Imaging modalities and data inputs 

The studies utilized a range of imaging inputs, 
including CTA, MRA, DSA, and 3D rotational 
angiography. CTA was the most commonly used 
modality, often preprocessed using normalization, 
skull stripping, and artifact reduction techniques. 
Some studies employed multi-phase imaging or 
computational fluid dynamics to enrich input 
features, particularly in rupture prediction tasks. 
5. Geographic and institutional distribution 

The geographic distribution of studies was 
heavily skewed toward East Asia, particularly 
China, followed by the United States, South Korea, 
and a few European countries. This concentration 
suggests a strong regional research interest but 
also raises concerns about potential population 
and data biases that may limit generalizability. 
6. Performance reporting and metric completeness 

There was considerable variation in how model 
performance was reported. Most studies included 
sensitivity, specificity, and AUC, but fewer 
provided Dice coefficients, false-positive rates, or 
confidence intervals. Reporting quality was highest 
in segmentation and detection studies and lower in 
outcome prediction or NLP-based investigations. 

 
 



 
 

 

 
Figure 3. Thematic evidence map of deep learning (DL) applications in intracranial aneurysm research 
This matrix visualizes the thematic classification of 42 studies included in the scoping review. Each row represents an 

individual study (abbreviated by first author and year), and each column denotes one of four primary domains of application: 

detection and segmentation, rupture risk prediction, treatment outcome prediction, and NLP/EMR-based patient 

identification. Shaded cells indicate that a study contributed substantively to the corresponding thematic area. This map 

highlights the concentration of research in detection-focused applications, while revealing gaps in external validation and 

clinical integration in underrepresented domains such as outcome forecasting and EMR-driven case identification. 

 
7. Focus on ruptured vs. unruptured aneurysms 

Several studies explicitly focused on 
unruptured aneurysms or specific subtypes, such 
as anterior communicating artery aneurysms. 
However, many studies did not clearly delineate 
between ruptured and unruptured lesions. This 
thematic ambiguity reflects a broader lack of 
consensus in the field regarding the most clinically 
actionable prediction targets. 

Discussion 
Several studies have recently used DL models to 
detect IAs using neuroimaging. Despite the 
challenges posed by size and location variability, 
image quality, imaging modality limitations, and 
artefacts in imaging, researchers have consistently 
reported high sensitivity, specificity, and accuracy. 
However, biases and concerns with the datasets 
restrict the overall diagnostic accuracy of this research. 



 

 
 

 

 
Figure 4. Model architecture versus clinical application in deep learning (DL) studies of intracranial 

aneurysms (IAs) 
This stacked bar chart illustrates the distribution of DL model architectures (horizontal axis) mapped to their primary 

clinical applications (stacked colors) across the included studies. CNN-based models are most frequently employed for 

detection and segmentation tasks, while hybrid ML/DL approaches and ANN/DNN architectures demonstrate broader 

use in rupture risk and outcome prediction. The chart reveals a relative underrepresentation of NLP/EMR-based 

applications, underscoring the need for further exploration of clinical informatics integration in this domain 

 
For example, several studies were conducted in 

a single center, which could be a primary cause of 
bias in the outcome.3,6,8,16,25 Additional constraints 
included short test dataset sizes, small IAs in the 
test dataset, type of studies, and reliance on 
internal rather than external datasets. 

Given the diversity of article types, no 
consistency or uniformity was found in the 
inclusion and exclusion criteria. In some of the 
studies examined, the criteria regarding IAs were 
based on factors such as the size of the 
aneurysms,62 while in others, criteria were based 
on the presence of certain types or specific 
locations of IAs.25 This nuanced approach to 
criteria underscores the complexity and variability 
inherent in the characteristics of IAs and their 
potential impact on the outcomes of the DL 
methods being investigated. 

Additionally, within the scope of the reviewed 
studies in this article, it is imperative to note that 
only 2 of them incorporated a control group in 
their methodology.63,64 This deficiency in including 
control groups can potentially introduce bias and 
significantly influence the outcomes derived from 
the proposed DL methodologies. Control groups 
serve as essential benchmarks against which the 

effectiveness and efficacy of new interventions or 
techniques can be evaluated. Consequently, the 
absence of control groups compromises the 
studies' internal validity and undermines their 
findings' reliability and generalizability. In future 
research endeavors, investigators must 
incorporate control groups systematically to 
enhance the robustness and credibility of their 
conclusions in DL methodologies. 

Several studies included in this review were 
conducted at a single center. A limitation of single-
centered studies is their potential lack of 
generalizability to broader populations or varied 
clinical settings, as they often reflect the 
characteristics and practices unique to a specific 
institution or patient population. Additionally, the 
findings from single-centered studies may be 
influenced by local biases or confounding factors, 
necessitating validation across multiple centers to 
establish robustness and applicability. 

Despite the extensive utilization of various DL 
models in multiple studies focusing on IA analysis, 
a critical gap remains in the absence of a 
comprehensive comparative study dedicated to 
assessing the variability of results concerning 
model architecture. Among the studies reviewed, 



 
 

 

CNN was the most used model. 
A notable limitation across all the reviewed 

studies is the exclusive validation of their DL 
models on private datasets. This practice hinders 
the independent verification of method 
effectiveness and the assessment of result 
variability concerning the utilized DL model 
architecture. The inability to access code and 
datasets from authors, often due to patient privacy 
policies and regulatory constraints, further 
compounds this issue, preventing researchers from 
replicating findings or comparing methodologies 
across studies effectively. However, it is essential 
to note exceptions, such as the studies by Feng  
et al.,22 Ham et al.,23 Chen et al.,21 and Shi et al.47 

Aneurysmal subarachnoid hemorrhage is one 
of the complications of a ruptured aneurysm, and 
its mortality rate is significantly high. Furthermore, 
developing a robust prediction model is necessary 
to assess the rupture risk of aneurysms. On the one 
hand, several studies have performed this process 
using ML-based algorithms.24,29,65 On the other 
hand, of the included studies in this review, the 
number of articles that aimed to investigate this 
section was insufficient. 

Preprocessing was applied in approximately a 
quarter of the studies. Unfortunately, the number of 
these studies was not significant compared to the 
number of studies included in this review, so it might 
affect the outcome and inference of the studies. 
Interpretability and the “Black-Box” challenge 

Despite the impressive diagnostic and 
predictive performance demonstrated by DL 
models in IA research, their clinical integration is 
fundamentally limited by the persistent  
“black-box” problem. Most DL models, 
particularly deep CNNs, operate through highly 
non-linear, high-dimensional feature spaces, 
making it challenging—even for developers—to 
elucidate the underlying logic of their outputs. The 
opacity of these models undermines clinicians’ 
trust, as critical decisions must be explainable and 
justifiable, particularly in high-stakes 
neurovascular care. This interpretability gap 
complicates error analysis, bias detection, and 
model calibration, thereby impeding regulatory 
acceptance and routine clinical adoption. The lack 
of visual or quantitative explanation tools—such as 
heatmaps, attention maps, or saliency analyses—in 
the reviewed literature further amplifies this 
challenge, highlighting an urgent need for 
investment in explainable AI (XAI) frameworks 
and clinician-in-the-loop validation studies.63,66 

Limitations of internal-only datasets and lack of 
multicenter validation 

A substantial proportion of the included 
studies relied exclusively on internal, single-
institution datasets for both model development 
and validation. While this approach may be 
sufficient for technical proof-of-concept, it 
significantly limits the generalizability of findings. 
Models trained and tested on a single dataset  
are prone to overfitting, potentially capturing  
site-specific imaging artifacts, acquisition 
protocols, or population demographics that do not 
translate across settings. The absence of 
multicenter, external validation further restricts 
the credibility and clinical applicability of these 
models. Without rigorous testing on diverse, 
independent cohorts, it is difficult to ascertain 
whether the reported performance reflects genuine 
clinical utility or is simply an artifact of local data 
characteristics. This methodological limitation is a 
major barrier to both academic benchmarking and 
regulatory endorsement.67 
Lack of benchmarking across models and 
imaging platforms 

Another critical gap identified in the current 
literature is the lack of systematic benchmarking 
across DL models, architectures, or imaging 
platforms. Many studies introduce novel models 
or variations but evaluate them only in isolation, 
using proprietary datasets and differing 
performance metrics. This heterogeneity prevents 
meaningful cross-study comparisons and impedes 
consensus regarding best-in-class models or 
optimal imaging modalities. Few studies provide 
head-to-head comparisons between different DL 
architectures (e.g., CNN vs. hybrid models) or 
assess robustness across imaging types such as 
CTA versus MRA. The field would benefit from 
collaborative benchmarking initiatives and 
standardized public datasets, which would enable 
transparent evaluation, facilitate reproducibility, 
and drive collective progress toward clinically 
reliable AI tools.68,69 
Regulatory, ethical, and data privacy concerns 

Clinical translation of DL in neurovascular 
imaging is also hindered by significant regulatory, 
ethical, and data privacy challenges. Most of the 
reviewed studies do not address how their models 
comply with existing data protection standards 
(e.g., HIPAA, GDPR) or how they would manage 
patient consent and data anonymization at scale. 
The use of proprietary, locally stored imaging data 
raises concerns about data security and  



 
 

 

re-identification risks, especially as model 
complexity increases. Furthermore, the black-box 
nature of many DL models presents regulatory 
hurdles, as agencies such as the FDA increasingly 
require explainability and robust post-market 
surveillance for AI-driven devices. Without 
frameworks for ongoing monitoring, auditing, and 
real-world performance assessment, the path from 
research prototype to approved clinical device 
remains fraught with uncertainty.70 
Deficit in outcome-based studies 

Despite the manuscript’s stated emphasis on 
“neurosurgical outcomes,” a striking deficit of 
outcome-focused research was identified. Only a 
small minority of the included studies directly 
addressed post-surgical or prognostic applications, 
such as predicting occlusion rates, recurrence, or 
patient functional outcomes following intervention. 
Instead, the majority of DL applications to date have 
prioritized anatomical detection, segmentation, or 
rupture risk stratification, with limited extension to 
longitudinal or post-therapeutic endpoints. This 
deficit represents a critical gap in the current 
landscape, as outcome-based modeling is essential 
for demonstrating the real-world value of AI in 
neurosurgical decision-making and patient 
management. Future research must prioritize the 
integration of perioperative and follow-up data, the 
development of longitudinal prediction models, 
and the validation of these approaches in diverse, 
prospectively collected cohorts.25,62,64,65,71-73 

Limitations: There were several limitations in 
this study. First, only papers published in English 
were included in this review, which might create 
bias. Second, our investigation was limited to 
reviewing papers available through open access, 
thus overlooking any research inaccessible to a 
broader audience. This approach might have 
implications for the comprehensiveness and 
representativeness of our findings. Third, the 
research methodology involved investigation 
across only 3 databases, with an additional 
scrutiny of targeted pages within Google Scholar. 
Fourth, the variation in the proposed and utilized 
ML and DL model is another issue in this field. 
Although numerous options exist for the use and 
development of various models and algorithms 
that might increase the accuracy and efficiency of 
detection of IAs, this variant might affect the 
precise outcome. 
Limitations and challenges of DL models in 
detecting IAs 

The "black-box" problem, in which the methods 
of data processing from the input to the output 

layers are not fully understood, is brought about 
by the complex structure of DNN algorithms. As a 
result, doctors could be hesitant to accept the 
results of a classifier system like this "black-box." 
Though guidelines and recommendations have 
recently been proposed, there is currently no clear 
legal consensus regarding the regulations for AI 
and ML models, unlike medical devices. 
Moreover, no clear legal guidelines are available 
regarding the independent mathematical 
interrogation and validation of outputs generated 
by ML systems.74 

 The legitimacy of the decision-making made 
possible by ML models is also questionable 
regarding who would be more responsible for 
these systems—the data scientists and 
programmers or the treating clinician? 

In addition to security concerns when sharing 
data between institutions and AI systems, ethical 
considerations when using large-volume patient 
data include data ownership and consent for an 
individual's data to be captured in an ML system. 
Since applied ML in the healthcare industry is still 
in its infancy, it is expected that problems with 
permission and data management may come up as 
the field develops and will need ongoing 
evaluation as AI advances. 

Because insufficient data supports its usage, AI 
CAD systems for aneurysm detection are not yet ready 
to be incorporated into standard clinical practice. 

If AI CAD tools assessed using internal test sets 
are reevaluated in subsequent research with 
anticipated external data, they will add further 
evidence to the body of knowledge. Large and 
representative datasets should be employed in 
studies that build AI tools to assure clinical uptake; 
clinical validation should then be accomplished 
through prospective multicenter trials. 

Conclusion 

The findings of the investigation demonstrate  
that DL methodologies exhibit promise in the 
detection of IAs. However, to enhance the 
robustness and reliability of these findings, future 
research endeavors necessitate the utilization of 
larger datasets. 

Such datasets must encompass a 
comprehensive representation of all types of 
aneurysms, regardless of size and location, to 
effectively capture the intricacies inherent in 
aneurysm detection.  

Additionally, to fully explain the impact of DL 
techniques in this field, it is recommended that the 



 
 

 

design of some studies should be diversified. By 
implementing varied study methodologies, 
researchers can better explain the breadth and 
depth of DL's efficacy in detecting IAs, thereby 
advancing the field toward more comprehensive 
and clinically relevant insights. 

Conflict of Interests 

The authors declare no conflict of interest in  
this study. 

Acknowledgments 

None. 
 
References 

1. Guo Y, Liu Y, Oerlemans A, Lao S,  

Wu S, Lew MS. Deep learning for visual 

understanding: A review. 
Neurocomputing 2016; 187: 27-48. 

2. Awuah WA, Adebusoye FT, Wellington J, 

David L, Salam A, Weng Yee AL, et al. 

Recent Outcomes and Challenges of 

Artificial Intelligence, Machine Learning, 

and Deep Learning in Neurosurgery. 
World Neurosurg X 2024; 23: 100301. 

3. Kim M, Yun J, Cho Y, Shin K, Jang R, Bae 

HJ, et al. Deep Learning in Medical 
Imaging. Neurospine 2019; 16(4): 657-68. 

4. Latif J, Xiao C, Imran A, Tu S. Medical 

imaging using machine learning and deep 
learning algorithms: a review.  2nd 

International conference on computing, 

mathematics and engineering technologies 
(iCoMET); Sukkur, Pakistan. New York, 

NY: IEEE; 2019. p. 1-5. 

5. Huang J, Shlobin NA, DeCuypere M, Lam 
SK. Deep Learning for Outcome 

Prediction in Neurosurgery: A Systematic 

Review of Design, Reporting, and 
Reproducibility. Neurosurgery 2022; 

90(1): 16-38. 
6. Guarneri B, Bertolini G, Latronico N. 

Long-term outcome in patients with 

critical illness myopathy or neuropathy: 
the Italian multicentre CRIMYNE study.  

J Neurol Neurosurg Psychiatry 2008; 

79(7): 838-41. 
7. Lu SL, Xiao FR, Cheng JC, Yang WC, 

Cheng YH, Chang YC, et al. Randomized 

multi-reader evaluation of automated 
detection and segmentation of brain 

tumors in stereotactic radiosurgery with 

deep neural networks. Neuro Oncol 2021; 
23(9): 1560-8. 

8. Rudie JD, Rauschecker AM, Bryan RN, 

Davatzikos C, Mohan S. Emerging 
Applications of Artificial Intelligence in 

Neuro-Oncology. Radiology 2019; 

290(3): 607-18. 
9. Keedy A. An overview of intracranial 

aneurysms. Mcgill J Med 2006; 9(2):  

141-6. 
10. Bonneville F, Sourour N, Biondi A. 

Intracranial aneurysms: an overview. 

Neuroimaging Clin N Am 2006; 16(3): 
371-82, vii. 

11. Cianfoni A, Pravatà E, De Blasi R, 

Tschuor CS, Bonaldi G. Clinical 
presentation of cerebral aneurysms. Eur  

J Radiol 2013; 82(10): 1618-22. 

12. Abdollahifard S, Farrokhi A, Kheshti F, 
Jalali M, Mowla A. Application of 

convolutional network models in detection 

of intracranial aneurysms: A systematic 
review and meta-analysis. Interv  

Neuroradiol 2023; 29(6): 738-47. 

13. Wang J, Sun J, Xu J, Lu S, Wang H, Huang 

C, et al. Detection of intracranial 
aneurysms using multiphase CT 

angiography with a deep learning model. 

Acad Radiol 2023; 30(11): 2477-86. 

14. International Study of Unruptured 

Intracranial Aneurysms Investigators. 

Unruptured intracranial aneurysms--risk of 
rupture and risks of surgical intervention. N 

Engl J Med 1998; 339(24): 1725-33. 

15. Turner CL, Higgins JN, Kirkpatrick PJ. 
Assessment of transcranial color-coded 

duplex sonography for the surveillance of 

intracranial aneurysms treated with 
Guglielmi detachable coils. Neurosurgery 

2003; 53(4): 866-71; discussion 71-2. 

16. Laukka D, Kivelev J, Rahi M, Vahlberg T, 
Paturi J, Rinne J, et al. Detection Rates and 

Trends of Asymptomatic Unruptured 

Intracranial Aneurysms From 2005 to 
2019. Neurosurgery 2024; 94(2): 297-306. 

17. Timmins KM, Van der Schaaf IC, Vos IN, 

Ruigrok YM, Velthuis BK, Kuijf HJ. 
Geometric deep learning using vascular 

surface meshes for modality-independent 
unruptured intracranial aneurysm 

detection. IEEE Trans Med Imaging 2023; 

42(11): 3451-60. 
18. Bizjak Ž, Špiclin Ž. A Systematic Review 

of Deep-Learning Methods for Intracranial 

Aneurysm Detection in CT Angiography. 
Biomedicines 2023; 11(11): 2921. 

19. Tricco AC, Lillie E, Zarin W, O'Brien  

KK, Colquhoun H, Levac D, et al. 
PRISMA Extension for Scoping Reviews 

(PRISMA-ScR): Checklist and 

Explanation. Ann Intern Med 2018; 
169(7): 467-73. 

20. Levac D, Colquhoun H, O'Brien KK. 

Scoping studies: advancing the 
methodology. Implement Sci 2010; 5: 69. 

21. Chen B, Xie K, Zhang J, Yang L, Zhou H, 

Zhang L, et al. Comprehensive analysis of 
mitochondrial dysfunction and necroptosis 

in intracranial aneurysms from the 

perspective of predictive, preventative, 
and personalized  medicine. Apoptosis 

2023; 28(9-10): 1452-68. 

22. Feng J, Zeng R, Geng Y, Chen Q, Zheng 
Q, Yu F, et al. Automatic differentiation of 

ruptured and unruptured intracranial 

aneurysms on computed tomography 
angiography based on deep learning  

and radiomics. Insights Imaging 2023; 

14(1): 76. 
23. Ham S, Seo J, Yun J, Bae YJ, Kim T, 

Sunwoo L, et al. Automated detection of 

intracranial aneurysms using skeleton-
based 3D patches, semantic segmentation, 

and auxiliary classification for 

overcoming data imbalance in brain TOF-

MRA. Sci Rep 2023; 13(1): 12018. 
24. Jiang J, Rezaeitaleshmahalleh M, Lyu Z, Mu 

N, Ahmed AS, Md CMS, et al. Augmenting 

Prediction of Intracranial Aneurysms' Risk 

Status Using Velocity-Informatics: Initial 

Experience. J Cardiovasc Transl Res 2023; 

16(5): 1153-65. 
25. Liu X, Mao J, Sun N, Yu X, Chai L, Tian 

Y, et al. Deep Learning for Detection of 

Intracranial Aneurysms from Computed 
Tomography Angiography Images. J Digit 

Imaging 2023; 36(1): 114-23. 

26. Patel TR, Patel A, Veeturi SS, Shah M, 
Waqas M, Monteiro A, et al. Evaluating a 

3D deep learning pipeline for cerebral 

vessel and intracranial aneurysm 
segmentation from computed tomography 

angiography-digital subtraction 

angiography image pairs. Neurosurg 
Focus 2023; 54(6): E13. 

27. Shao D, Lu X, Liu X. 3D intracranial 

aneurysm classification and segmentation 
via unsupervised dual-branch learning. 

IEEE J Biomed Health Inform 2022; 
27(4): 1770-9. 

28. Allgaier M, Amini A, Neyazi B, 

Sandalcioglu IE, Preim B, Saalfeld S. VR-
based training of craniotomy for 

intracranial aneurysm surgery. Int  

J Comput Assist Radiol Surg 2022;  
17(3): 449-56. 

29. Lei X, Yang Y. Deep Learning-Based 

Magnetic Resonance Imaging in 
Diagnosis and Treatment of Intracranial 

Aneurysm. Comput Math Methods Med 

2022; 2022: 1683475. 
30. Li R, Zhou P, Chen X, Mossa-Basha M, 

Zhu C, Wang Y. Construction and 

Evaluation of Multiple Radiomics Models 
for Identifying the Instability of 

Intracranial Aneurysms Based on CTA. 

Front Neurol 2022; 13: 876238. 
31. Tian Z, Li W, Feng X, Sun K, Duan C. 

Prediction and analysis of periprocedural 

complications associated with 
endovascular treatment for unruptured 

intracranial aneurysms using machine 

learning. Front Neurol 2022; 13: 1027557. 
32. Wu K, Gu D, Qi P, Cao X, Wu D, Chen L, 

et al. Evaluation of an automated 

intracranial aneurysm detection and 
rupture analysis approach using cascade 

detection and classification networks. 

Comput Med Imaging Graph 2022; 102: 
102126. 

33. Kim KH, Koo HW, Lee BJ, Sohn MJ. 

Analysis of risk factors correlated with 
angiographic vasospasm in patients with 

https://www.sciencedirect.com/author/7004254256/songyang-lao
https://www.sciencedirect.com/author/57208852387/michael-s-lew


 

 
 

 

aneurysmal subarachnoid hemorrhage 
using explainable predictive modeling.  

J Clin Neurosci 2021; 91: 334-42. 

34. Ou C, Liu J, Qian Y, Chong W, Liu D, He 
X, et al. Automated Machine Learning 

Model Development for Intracranial 

Aneurysm Treatment Outcome Prediction: 
A Feasibility Study. Front Neurol 2021; 

12: 735142. 

35. Pennig L, Hoyer UCI, Krauskopf A, 
Shahzad R, Jünger ST, Thiele F, et al. 

Deep learning assistance increases the 

detection sensitivity of radiologists 
for secondary intracranial aneurysms in 

subarachnoid hemorrhage. 

Neuroradiology 2021; 63(12): 1985-94. 
36. Afzal M, Alam F, Malik KM, Malik GM. 

Clinical Context-Aware Biomedical Text 

Summarization Using Deep Neural 
Network: Model Development and 

Validation. J Med Internet Res 2020; 

22(10): e19810. 
37. Chen G, Lu M, Shi Z, Xia S, Ren Y, Liu 

Z, et al. Development and validation of 

machine learning prediction model based 
on computed tomography angiography-

derived hemodynamics for rupture status 

of intracranial aneurysms: a Chinese 
multicenter study. Eur Radiol 2020; 30(9): 

5170-82. 

38. Chen G, Wei X, Lei H, Liqin Y, Yuxin L, 
Yakang D, et al. Automated computer-

assisted detection system for cerebral 

aneurysms in time-of-flight magnetic 
resonance angiography using fully 

convolutional network. Biomed Eng 

Online 2020; 19(1): 38. 
39. Detmer FJ, Lückehe D, Mut F, Slawski M, 

Hirsch S, Bijlenga P, et al. Comparison  
of statistical learning approaches for 

cerebral aneurysm rupture assessment. Int 

J Comput Assist Radiol Surg 2020; 15(1): 
141-50. 

40. Duan Z, Montes D, Huang Y, Wu D, 

Romero J, Gonzalez R, et al. Deep  
Learning Based Detection and Localization 

of Cerebal Aneurysms in Computed 

Tomography Angiography 2020. 
41. Jin H, Geng J, Yin Y, Hu M, Yang G, 

Xiang S, et al. Fully automated intracranial 

aneurysm detection and segmentation 
from digital subtraction angiography 

series using an end-to-end spatiotemporal 

deep neural network. J Neurointerv Surg 
2020; 12(10): 1023-7. 

42. Lv N, Karmonik C, Shi Z, Chen S, Wang 

X, Liu J, et al. A pilot study using a 
machine-learning approach of 

morphological and hemodynamic 

parameters for predicting aneurysms 
enhancement. Int J Comput Assist Radiol 

Surg 2020; 15(8): 1313-21. 

43. Ou C, Liu J, Qian Y, Chong W, Zhang X, 
Liu W, et al. Rupture Risk Assessment for 

Cerebral Aneurysm Using Interpretable 

Machine Learning on Multidimensional 
Data. Front Neurol 2020; 11: 570181. 

44. Podgorsak AR, Rava RA, Shiraz 

Bhurwani MM, Chandra AR, Davies JM, 
Siddiqui AH, et al. Automatic radiomic 

feature extraction using deep learning for 

angiographic parametric imaging of 

intracranial aneurysms. J Neurointerv 
Surg 2020; 12(4): 417-21. 

45. Poppenberg KE, Tutino VM, Li L, Waqas 

M, June A, Chaves L, et al. Classification 
models using circulating neutrophil 

transcripts can detect unruptured 

intracranial aneurysm. J Transl Med 2020; 
18(1): 392. 

46. Rajabzadeh-Oghaz H, Waqas M, Veeturi 

SS, Vakharia K, Tso MK, Snyder KV, et 
al. A data-driven model to identify high-

risk aneurysms and guide management 

decisions: the Rupture Resemblance 
Score. J Neurosurg 2021; 135(1): 9-16. 

47. Shi Z, Miao C, Schoepf UJ, Savage RH, 

Dargis DM, Pan C, et al. A clinically 
applicable deep-learning model for 

detecting intracranial aneurysm in 

computed tomography angiography 
images. Nat Commun 2020; 11(1): 6090. 

48. Bhurwani MMS, Waqas M, Podgorsak 

AR, Williams KA, Davies JM, Snyder K, 
et al. Feasibility study for use of 

angiographic parametric imaging and deep 

neural networks for intracranial aneurysm 
occlusion prediction. J Neurointerv Surg 

2020; 12(7): 714-9. 

49. Wu D, Montes D, Duan Z, Huang Y, 
Romero JM, Gonzalez RG, et al.  

Deep learning based detection and 

localization of intracranial aneurysms in 
computed tomography angiography. 

arXiv:2005.11098v2 2021. [Preprint]. 

50. Xia N, Chen J, Zhan C, Jia X, Xiang Y, 
Chen Y, et al. Prediction of clinical 

outcome at discharge after rupture of 

anterior communicating artery aneurysm 
using the random forest technique. Front 

Neurol 2020; 11: 538052. 
51. Yang X, Xia D, Kin T, Igarashi T. Surface-

based 3D deep learning framework  

for segmentation of intracranial 
aneurysms from TOF-MRA images. 

arXiv.2006.16161v1 2020. [Preprint]. 

52. Zeng Y, Liu X, Xiao N, Li Y, Jiang Y, 
Feng J, et al. Automatic Diagnosis Based 

on Spatial Information Fusion Feature for 

Intracranial Aneurysm. IEEE Trans Med 
Imaging 2020; 39(5): 1448-58. 

53. Zhu W, Li W, Tian Z, Zhang Y, Wang K, 

Zhang Y, et al. Stability Assessment of 
Intracranial Aneurysms Using Machine 

Learning Based on Clinical and 

Morphological Features. Transl Stroke 
Res 2020; 11(6): 1287-95. 

54. Duan H, Huang Y, Liu L, Dai H, Chen L, 

Zhou L. Automatic detection on 
intracranial aneurysm from digital 

subtraction angiography with cascade 

convolutional neural networks. BioMed 
Eng OnLine 2019; 18(1): 110. 

55. Hanaoka S, Nomura Y, Takenaga T, Murata 

M, Nakao T, Miki S, et al. HoTPiG: a novel 
graph-based 3-D image feature set and its 

applications to computer-assisted 

detection of cerebral aneurysms and lung 
nodules. Int J Comput Assist Radiol Surg 

2019; 14(12): 2095-107. 

56. Liu Q, Jiang P, Jiang Y, Ge H, Li S, Jin H, 
et al. Prediction of Aneurysm Stability 

Using a Machine Learning Model Based 

on PyRadiomics-Derived Morphological 

Features. Stroke 2019; 50(9): 2314-21. 
57. Liu J, Chen Y, Lan L, Lin B, Chen W, 

Wang M, et al. Prediction of rupture risk 

in anterior communicating artery 
aneurysms with a feed-forward artificial 

neural network. Eur Radiol 2018; 28(8): 

3268-75. 
58. Castro VM, Dligach D, Finan S, Yu S, Can 

A, Abd-El-Barr M, et al. Large-scale 

identification of patients with cerebral 
aneurysms using natural language 

processing. Neurology 2017; 88(2): 164-8. 

59. Meuschke M, Voß S, Beuing O, Preim B, 
Lawonn K. Glyph-Based Comparative 

Stress Tensor Visualization in Cerebral 

Aneurysms. Comput Graph Forum 2017; 
36(3): 99-108. 

60. Haraguchi K, Miyachi S, Matsubara N, 

Nagano Y, Yamada H, Marui N, et al. A 
mechanical coil insertion system for 

endovascular coil embolization of 

intracranial aneurysms. Interv Neuroradiol 
2013; 19(2): 159-66. 

61. Johnson E, Zhang Y, Shimada K. 

Estimating an equivalent wall‐thickness of 
a cerebral aneurysm through surface 

parameterization and a non‐linear spring 

system. Int J Numer Methods Biomed Eng 
2011; 27(7): 1054-72. 

62. Noori Mirtaheri P, Akhbari M, Najafi F, 

Mehrabi H, Babapour A, Rahimian Z,  
et al. Performance of deep learning models 

for automatic histopathological grading of 

meningiomas: a systematic review and 
meta-analysis. Front Neurol 2025; 16: 

1536751. 

63. Basem J, Mani R, Sun S, Gilotra K, 
Dianati-Maleki N, Dashti R. Clinical 

applications of artificial intelligence and 
machine learning in neurocardiology: a 

comprehensive review. Front Cardiovasc 

Med 2025; 12: 1525966. 
64. Sajjadi SM, Mohebbi A, Ehsani A, 

Marashi A, Azhdarimoghaddam A, 

Karami S, et al. Identifying abdominal 
aortic aneurysm size and presence using 

Natural Language Processing of radiology 

reports: a systematic review and meta-
analysis. Abdom Radiol (NY) 2025; 

50(8): 3885-99. 

65. Nafees Ahmed S, Prakasam P. A 
systematic review on intracranial 

aneurysm and hemorrhage detection using 

machine learning and deep learning 
techniques. Prog Biophys Mol Biol 2023; 

183: 1-16. 

66. Hanna MG, Pantanowitz L, Jackson B, 
Palmer O, Visweswaran S, Pantanowitz J, 

et al. Ethical and Bias Considerations in 

Artificial Intelligence/Machine Learning. 
Mod Pathol 2025; 38(3): 100686. 

67. Paullada A, Raji ID, Bender EM, Denton 

E, Hanna A. Data and its (dis)contents: A 
survey of dataset development and use in 

machine learning research. Patterns (N Y) 

2021; 2(11): 100336. 
68. Hosny A, Parmar C, Quackenbush J, 

Schwartz LH, Aerts H. Artificial 

intelligence in radiology. Nat Rev Cancer 
2018; 18(8): 500-10. 

69. Casey A, Davidson E, Poon M, Dong H, 

Duma D, Grivas A, et al. A systematic 



 
 

 

review of natural language processing 
applied to radiology reports. BMC Med 

Inform Decis Mak 2021; 21(1): 179. 

70. White T, Blok E, Calhoun VD. Data sharing 
and privacy issues in neuroimaging 

research: Opportunities, obstacles, 

challenges, and monsters under the bed. 
Hum Brain Mapp 2022; 43(1): 278-91. 

71. Yousefi M, Akhbari M, Mohamadi Z, 

Karami S, Dasoomi H, Atabi A, et al. 
Machine learning based algorithms for  

virtual early detection and screening of 
neurodegenerative and neurocognitive 

disorders: a systematic-review. Front 

Neurol 2024; 15: 1413071. 
72. Yoonesi S, Abedi Azar R, Arab Bafrani M, 

Yaghmayee S, Shahavand H, 

Mirmazloumi M, et al. Facial expression 
deep learning algorithms in the detection 

of neurological disorders: a systematic 

review and meta-analysis. Bio med Eng 
Online 2025; 24(1): 64. 

73. Sharifi G, Hajibeygi R, Zamani SAM, 
Easa AM, Bahrami A, Eshraghi R, et al. 

Diagnostic performance of neural network 

algorithms in skull fracture detection on 
CT scans: a systematic review and meta-

analysis. Emerg Radiol 2025; 32(1): 97-

111. 
74. Luxton DD. Recommendations for the 

ethical use and design of artificial 

intelligent care providers. Artif Intell Med 
2014; 62(1): 1-10. 


