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Deep learning algorithms and IAs

Abstract

Background: Intracranial aneurysms (IAs) pose a
significant risk of rupture and subarachnoid
hemorrhage, necessitating early, accurate detection
and risk stratification. With advances in artificial
intelligence, deep learning (DL) has emerged as a
transformative tool in neurovascular imaging.
However, the clinical translation of DL applications
remains constrained by variability in model design,
data sources, and validation strategies. The aim of the
present study was to systematically map and evaluate
the landscape of DL applications in the detection,
segmentation, risk prediction, and outcome
assessment of IAs, with attention to methodological
rigor, clinical utility, and translational limitations.
Methods: We conducted a scoping review of studies
indexed in PubMed, Scopus, and Web of Science up to
August 2023, following PRISMA-ScR guidelines.
Eligible studies employed DL algorithms for |A-related
diagnostic or prognostic tasks using radiological
imaging. Data extraction included model architecture,
imaging modality, validation strategy, performance
metrics, and thematic focus. Study quality was
assessed using the Joanna Briggs Institute (JBI) critical
appraisal tools.

Results: Forty-two studies met the inclusion criteria,
encompassing over 10,000 patients across diverse
imaging  platforms and DL  architectures.
Convolutional neural networks (CNNs) were the most
commonly used models, with reported sensitivities
ranging from 73% to 99% and AUCs frequently
exceeding 0.85. Despite promising results in IA
detection and rupture risk prediction, only a minority
of studies conducted external validation or addressed
post-treatment outcomes. Major gaps include a lack
of  benchmarking  across models, limited
explainability, and requlatory or ethical frameworks.
Conclusion: DL algorithms demonstrate strong
diagnostic and predictive performance in IA imaging
but face critical barriers to clinical integration,
including  interpretability  challenges,  dataset
heterogeneity, and limited generalizability. Future
research should prioritize multicenter validation,
explainable Al techniques, and outcome-focused
modeling to advance safe and effective deployment in
neurosurgical care.

Introduction

Deep learning (DL) is a subset of machine learning
(ML) that aims to extract high-level
representations, analyze them, and learn relevant
information from raw data using hierarchical
architectures.’? It consists of various algorithms
used to develop complex generalized systems
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capable of solving problems and providing
accurate predictions. ML and DL algorithms have
become popular tools for addressing various
challenges in medical imaging fields.?

These algorithms use supervised or
unsupervised methods and rely on detailed
datasets to predict early signs of disease.* There
are various potential applications of DL
technology in medical imaging that can improve
the healthcare system and patient outcomes.?

The wuse of DL to predict neurosurgical
outcomes is still in its infancy. While profound
learning studies have shown promise, promoting
the validity and reproducibility of DL models
requires more data and model interpretability.>

Surgeries related to the brain are high-risk
procedures that carry a considerable risk of
morbidity and mortality.? To improve clinical
treatment outcomes and minimize postoperative
disability, the recovery process can incorporate DL
and microscopic imaging to reduce risks and
potential patient loss. Studies demonstrated that
this approach can significantly enhance the
neurosurgery nursing process.¢

To revolutionize neurosurgery, Al, ML, and DL
are combined to provide insights into the patient's
condition and assist neurosurgeons in making more
effective decisions during surgical interventions,
improving diagnostic and prognostic outcomes.?
Al can be practical in diagnosing complicated
neurological ~ disorders  like  intracerebral
hemorrhage (ICH) and cerebral aneurysms.

Al uses ML and DL algorithms that are more
efficient than radiologists in detecting intracranial
aneurysms (IAs) and anticipating their extent
using computed tomography (CT) angiograms and
non-contrast CT.78

IAs are relatively common, occurring in
approximately 4% of the population.? IAs can be
classified into four types: saccular, fusiform,
dissecting, and mycotic. Saccular aneurysms
account for 90% of all [As.1 Most aneurysms do
not cause any symptoms and may not rupture, but
they can expand unpredictably and always carry a
risk of rupture.!! In some cases, an aneurysm may
cause symptoms due to its mass effect.’

If an aneurysm ruptures, it can result in a
subarachnoid hemorrhage, which has a high
mortality rate and significant disease burden.%12
Therefore, accurate and early detection of IAs in
clinical practice is crucial.’® The size and location of
an aneurysm affect its rupture risk.!* A 1998 study
called the International Study of Unruptured
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Intracranial Aneurysms (ISUIA) found that for
patients with aneurysms smaller than 10 mm and
no prior SAH, the annual risk of rupture was
0.05%. For aneurysms larger than 10 mm, the risk
was 1% per year. Study data from 2003 showed a
0% and 2.5% five-year rupture risk for small
aneurysms in the anterior and posterior
circulation, respectively.1>

To diagnose and monitor 1As, various imaging
techniques are wused, including intra-arterial
digital subtraction angiography (IADSA), which is
the gold standard for diagnosis of cerebral
aneurysms, computed tomography angiography
(CTA), magnetic resonance angiography (MRA),
and transcranial Doppler ultrasonography.® The
detection rate of asymptomatic unruptured
intracranial aneurysms (UIAs) has remarkably
increased over the past 15 years. This coincides with
increased CTA/MRA imaging.' Developing more
precise imaging modalities is crucial for assessing
the risk of UIA rupture and improving conservative
treatment options, such as medication.16:17

Artificial intelligence (Al)-based algorithms can
enhance the detection rate early and minimize
intra- and inter-rater variability.’® A CNN is a type
of DL architecture which can aid clinicians in
diagnosing IAs with high sensitivity. It has been
shown to improve clinicians’ performance by
providing dependable and accurate predictions,
thereby optimizing patient care.> Our objective in
this scoping review was to assess the effectiveness
of DL algorithms in detecting IAs and their
subsequent neurosurgical outcomes.

Research Question: “How have DL algorithms
been applied in the detection of IAs and the
prediction of neurosurgical outcomes across diverse
clinical populations and imaging contexts?”

PCC Framework

Population: Patients with diagnosed or
suspected IAs

Concept: Application of DL algorithms

Context: Diagnostic imaging and neurosurgical
outcome prediction in clinical and experimental
settings

Materials and Methods

This review was conducted in accordance with the
PRISMA-ScR  (Preferred Reporting Items for
Systematic Reviews and Meta-Analyses extension
for Scoping Reviews) guidelines.?®

Given the heterogeneity in study designs,
imaging modalities, and model architectures
applied in the domain of DL for IA detection, a
scoping review was deemed more appropriate
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than a systematic review. Scoping reviews allow
for mapping the breadth of evidence, identifying
key concepts, and clarifying working definitions
and gaps in research.? This approach aligns with
the updated methodological guidance by the Joanna
Briggs Institute (JBI) for conducting evidence
synthesis in complex and emerging fields.

Search strategy: A comprehensive literature
search was conducted across PubMed, Web of
Science, and Scopus up to August 2023. The
strategy incorporated a combination of controlled
vocabulary (e.g., MeSH terms) and free-text terms
related to "deep learning," "intracranial aneurysm,"
and "cerebral aneurysm." The full search strategies
used for each database are detailed in table 1. The
reference lists of included articles were also
manually screened to identify additional eligible
studies. Duplicate records were removed using
EndNote, and screening was performed using the
Rayyan platform.

Eligibility  criteria: This scoping review
included original research articles that reported on
the application of DL algorithms for the detection,
segmentation, risk prediction, or neurosurgical
outcome assessment of IAs. Eligible studies
involved human subjects with diagnosed or
suspected IAs and utilized radiological imaging
modalities such as CT, CTA, magnetic resonance
imaging (MRI), MRA, or digital subtraction
angiography (DSA). We included studies employing
DL models, such as CNNs, artificial neural
networks (ANNSs), and other advanced architectures,
provided they reported at least one quantitative
performance metric —such as sensitivity, specificity,
accuracy, AUC, or Dice coefficient—and conducted
any form of model validation.

We included retrospective, prospective,
diagnostic, and experimental studies published
in English with full-text availability. Studies were
excluded if they were preclinical or non-human
studies, review articles, editorials, case reports,
conference abstracts, or methodological
commentaries without original data. Additionally,
studies were excluded if they did not utilize DL
methods or failed to report any measurable
outcomes related to model performance or clinical
applicability. Articles lacking accessible full texts
or published in languages other than English were
also excluded.

Study selection and data extraction: All
identified articles were imported into EndNote for
deduplication and, then, uploaded to Rayyan, a
web-based tool designed to facilitate systematic
review screening.
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Deep learning algorithms and IAs

Table 1. Curated search strategies for each chosen database

Database Search strategy

PubMed ("Deep Learning"[tiab] OR "hierarchical learning"[tiab] OR "deep machine learning"[tiab] OR "deep
structured learning™[tiab] OR "machine learning"[tiab] OR "reinforcement learning"[tiab] OR
"supervised learning”[tiab] OR "unsupervised learning"[tiab] OR "action-based learning"[tiab] OR
"actor-critic methods"[tiab] OR "actual learning”[tiab] OR "adversarial training"[tiab] OR "algorithmic
learning”[tiab] OR "apprenticeship learning"[tiab] OR "artificial neural network"[tiab] OR "artificial
neural network*"[tiab] OR "autoencoders”[tiab] OR "automated learning"[tiab] OR
"backpropagation[tiab] OR "bayesian network*"[tiab] OR "bayesian optimization"[tiab] OR
"computational intelligence paradigm"[tiab] OR "computer vision"[tiab] OR "computer-based
learning"[tiab] OR "convolutional neural network*"[tiab] OR "data-driven learning"[tiab] OR "Deep
Learning"[Mesh] OR "Machine Learning"[Mesh] OR "Supervised Machine Learning"[Mesh] OR
"Unsupervised Machine Learning"[Mesh] OR "Atrtificial Intelligence”[Mesh] OR "Neural Networks,
Computer”[Mesh]) AND ("Intracranial Aneurysm"[tiab] OR "Intracranial Aneurysm*"[tiab] OR
"cerebral aneurysm"[tiab] OR "cerebral aneurysm*"[tiab]

WOs (CCCcccceeecccccceeeecccccceeeccms=("Deep Learning")) OR TS=("hierarchical learning”)) OR
TS=("deep machine learning™)) OR TS=("deep structured learning™)) OR TS=("machine learning")) OR
TS=("reinforcement learning™)) OR TS=("supervised learning™)) OR TS=("unsupervised learning")) OR

TS=("action-based learning™)) OR TS=("actor-critic methods")) OR TS=("actual learning")) OR
TS=("adversarial training™)) OR TS=("algorithmic learning")) OR TS=("apprenticeship learning™)) OR
TS=("artificial neural network™)) OR TS=("artificial neural network*")) OR TS=("auto encoders")) OR

TS=("automated learning")) OR TS=("back propagation")) OR TS=("bayesian network*")) OR

TS=("bayesian optimization™)) OR TS=("computational intelligence paradigm")) OR TS=("computer
vision")) OR TS=("computer-based learning")) OR TS=("convolutional neural network*")) OR
TS=("data-driven learning")) AND TS=("Intracranial Aneurysm")) OR TS=("Intracranial Aneurysm*"))
OR TS=("cerebral aneurysm")) OR TS=("cerebral aneurysm*")) OR TS=("brain aneurysm")) OR
TS=("brain aneurysm*"))

Scopus (TITLE-ABS-KEY ( "Deep Learning™ ) OR TITLE-ABS-KEY ( "hierarchical learning” ) OR TITLE-
ABS-KEY ( "deep machine learning™ ) OR TITLE-ABS-KEY ( "deep structured learning" ) OR TITLE-
ABS-KEY ( "machine learning" ) OR TITLE-ABS-KEY ( "reinforcement learning” ) OR TITLE-ABS-
KEY ( "supervised learning" ) OR TITLE-ABS-KEY ( "unsupervised learning” ) OR TITLE-ABS-KEY

( "action-based learning” ) OR TITLE-ABS-KEY ( "actor-critic methods” ) OR TITLE-ABS-KEY (
"actual learning” ) OR TITLE-ABS-KEY ( "adversarial training" ) OR TITLE-ABS-KEY ( "algorithmic
learning" ) OR TITLE-ABS-KEY ( "apprenticeship learning" ) OR TITLE-ABS-KEY ( “artificial neural

network" ) OR TITLE-ABS-KEY ( "artificial neural network*" ) OR TITLE-ABS-KEY ( "auto
encoders" ) OR TITLE-ABS-KEY ( "automated learning” ) OR TITLE-ABS-KEY ( "back propagations"
) OR TITLE-ABS-KEY ( "bayesian network*" ) OR TITLE-ABS-KEY ( "bayesian optimization" ) OR
TITLE-ABS-KEY ( "computational intelligence paradigm" ) OR TITLE-ABS-KEY ( "computer vision"
) OR TITLE-ABS-KEY ( "computer-based learning™ ) OR TITLE-ABS-KEY ( "convolutional neural
network*" ) OR TITLE-ABS-KEY ( "data-driven learning” ) AND ( TITLE-ABS-KEY ( "Intracranial

Aneurysm") OR TITLE-ABS-KEY ( "Intracranial Aneurysm*" ) OR TITLE-ABS-KEY ( "cerebral

aneurysm™ ) OR TITLE-ABS-KEY ( "cerebral aneurysm*" ) OR TITLE-ABS-KEY ( "brain aneurysm™ )
OR TITLE-ABS-KEY ( "brain aneurysm*")

Two independent reviewers screened titles and
abstracts against the eligibility criteria. Full texts of
potentially relevant studies were subsequently
retrieved and reviewed in detail for inclusion.
Discrepancies in study selection were resolved
through discussion between the two reviewers,
and a third reviewer was consulted when
consensus could not be reached. Inter-rater
agreement during the initial screening phase was
measured using Cohen’s kappa coefficient to
ensure consistency in study selection.

For data extraction, a standardized charting
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form was developed a priori and piloted on a
subset of included studies to ensure clarity and
comprehensiveness. This form included the
following variables: first author, year of
publication, country or region, study design,
sample size, imaging modality, aneurysm
characteristics (location, size, type), type of DL
architecture used, data preprocessing methods,
model validation approach (internal or external),
performance metrics (e.g., sensitivity, specificity,
AUC), and primary outcomes related to detection
accuracy or clinical utility. Data extraction was
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conducted independently by two reviewers.
Any discrepancies in data abstraction were
resolved through discussion, and if necessary,
adjudicated by a third reviewer to ensure data
accuracy and reliability.

Quality assessment: Quality assessment
was performed for each included study using the
JBL critical appraisal tools, with the version
selected according to the study design. For
diagnostic accuracy studies, the JBI Critical
Appraisal Checklist for Diagnostic Test Accuracy
Studies was applied. For cohort and cross-sectional
studies, the JBI Checklist for Analytical Cross
Sectional Studies and the JBI Checklist for Cohort
Studies were used as appropriate. Two reviewers
assessed each study independently, with
discrepancies resolved by consensus.

Thematic analysis approach: To synthesize the
heterogeneity of study objectives, methodologies,
and outcomes, we conducted a thematic analysis of
the included studies. Themes were derived
inductively, based on patterns observed during
data extraction and synthesis, rather than being
predefined. Two reviewers independently
examined the extracted study variables —such as
model architecture, clinical application, validation
strategies, and imaging modality —and grouped
them into emergent thematic categories.
Discrepancies in theme assignment were resolved
through discussion, and consensus was reached in
all cases. No formal coding software was used;
however, the process was guided by principles of
qualitative content analysis and aimed to achieve
thematic saturation. The final set of themes—
encompassing  clinical applications, model
architectures, validation rigor, imaging inputs,
geographic distribution, performance reporting,
and focus on rupture status—was reviewed by a
third senior reviewer to ensure conceptual clarity
and coherence with the review’s aims.

Data synthesis and visualization: To provide a
comprehensive overview of the evidence
landscape, we conducted several quantitative and
thematic syntheses of the extracted data. Following
data extraction, all study-level variables—
including model architecture, clinical application,
country of origin, and performance metrics —were
coded in a structured spreadsheet and
independently verified for accuracy.

Thematic mapping was performed to
categorize each study according to its primary DL
application domain (e.g., detection/segmentation,
rupture risk prediction, treatment outcome
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prediction, or EMR/NLP-based identification).
This enabled the creation of a thematic evidence
map, visualized as a matrix, which illustrates the
breadth and concentration of research activity
across key clinical domains.

To examine global research distribution, we
recorded the country of origin for each study based
on first or corresponding author affiliations.
Multinational collaborations were attributed to all
participating countries. The frequency of studies
per country was then visualized on a world map
(bubble map), with bubble size reflecting the total
number of included studies from each country,
thereby highlighting geographic disparities and
research clusters.

For methodological benchmarking, we further
cross-tabulated the model architecture (e.g.,
CNN-based, hybrid ML/DL, ANN/DNN, or
NLP) against the principal clinical application of
each study. This was visualized as a stacked bar
chart, illustrating how different DL architectures
are distributed across the major clinical tasks
addressed in the literature.

All visualizations were generated using Python
(matplotlib, seaborn, Basemap, and pandas libraries)
based on the manually curated extraction table.
These figures are presented in the results section to
facilitate transparent comparison and thematic and
geographic research gaps identification.

Results

Study characteristics and geographic distribution:
This scoping review included 42 studies published
between 2011 and 2023, encompassing a broad
range of study designs, including retrospective
analyses, cross-sectional studies, diagnostic
investigations, =~ prospective  cohorts,  and
translational projects. The majority of the included
studies were retrospective, and most were
conducted in China, followed by the United
States, South Korea, Germany, and Japan (Table 2).
Collectively, the studies represented data from
over 10000 patients with confirmed or suspected
IAs, reflecting a substantial and growing global
interest in leveraging artificial intelligence for
neurovascular diagnostics (Figures 1 and 2).

Quality assessment results: The overall
methodological quality of the included studies
was variable. While most studies met the majority
of relevant JBI criteria, frequent limitations
included lack of external validation, absence of
control groups, and lack of reporting of patient
selection or blinding.

Curr ] Neurol, Vol. 24, No. 1 (2025) 45
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Table 2. Summary findings of studies included in this scoping review (Part I)

Author Country Type of Population DL model Outcome Conclusion
study
Chen China Translational 75 Intracranial The study employed ML to identify the Both the high mitochondrial Involvement of
etal.? aneurysm patients diagnostic significance of key genes dysfunction group and the high mitochondria-induced
37 control samples related to 1A necroptosis group had increased levels  necroptosis in the formation
of mitochondrial pathways, necroptosis of 1As was shown.
pathways and immune pathways.
The upregulation of mitochondria-
induced necroptosis emerges as a
potential and novel target for
predictive diagnosis.
Feng China Cross- Training set: 898 A three-dimensional CNN was used to The method found 13 features The proposed method had
etal.? Sectional patients automatically perform aneurysm associated with aneurysm rupture. high diagnostic efficiency
Test set: 253 detection, segmentation, and in identifying between
patients morphological feature extraction. ruptured and unruptured
Following the process of dimensionality aneurysms.
reduction, three classification models
were developed and assessed using the
area under the receiver operating
characteristic curve: SVM, RF, and MLP
Ham South Retrospective  Internal validation: CNN with 3D TOF-MRA High adequate performance of the Utilizing 3D patches in
etal.? Korea 154 patients proposed method in aneurysm brain 3D TOF-MRA,
External validation: segmentation was shown. enables rapid and accurate
113 patients aneurysm detection,
supporting quick diagnosis.
Jiang USA, Retrospective Training set: 102 Computational fluid dynamics The prediction was improved with Including velocity-
etal.? China patients simulations and geometrical analyses velocity-informatics metrics. informatics from
Test set: 10 patients  were conducted, and 3D velocity vector aneurismal velocity data
fields within the 1A dome were processed can enhance the overall
for velocity-informatics. Four ML rupture status
methods were employed (SVM, RF, characterization of an IA.
generalized linear model, and GLM with
Lasso or elastic net regularization) to
evaluate the effectiveness of the proposed
velocity-informatics.
Liu China Retrospective Training set: 80 The study utilizes the DeepMedic The DeepMedic platform's DL The 3D CNN system
etal.?® patients platform, employing a 3D CNN architecture, which uses a 3D CNN shows accurate intracranial
Test set: 10 patients  architecture for automatic segmentation model, can segment and detect 1As aneurysm detection and
and detection of 1As from CTA images. from CTA images with high segmentation from
sensitivity and reliability. CTA images.
46 Curr ] Neurol, Vol. 24, No. 1 (2025)
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Author Country Type of Population DL model Outcome Conclusion
study
Patel USA Retrospective Training set: 27 A DL model (3D DeepMedic) utilized The DeepMedic model successfully Architecture performed
etal.?® Validation: 30 for cerebrovasculature segmentation delineated all 1As and showed lower exceptionally well in the
Test set: 20 from CTA error rates for A morphometrics segmentation of cerebral
compared to human raters. vessels and 1A
The results demonstrate the ability
of CTA scans to produce precise
visualizations of cerebral vasculature
and abnormalities, including 1A.
Shao Australi - - The method comprises two stages: The unsupervised method Unsupervised
etal.?’ a unsupervised learning and downstream demonstrates comparable or superior representation learning
tasks. In the first stage, augmentation is  performance compared to state-of-the-  method was effective in the
applied to each point cloud, creating pairs  art supervised techniques, particularly classification and
of augmented samples with differing excelling in the detection of segmentation of 3D IAs.
poses and in the second stage, the trained aneurysmal vessels.
model's unsupervised representations are
concatenated and used as input for
downstream tasks to assess the
effectiveness of unsupervised learning.
Wang China Retrospective ~ Training set: 1110 The DAResUNet network, employed for ~ The multiphase analysis demonstrated  Automated detection of 1As
etal.® patients training, utilizes a 3D-CNN with an higher sensitivity compared to the with high sensitivity was
Internal validation: encoder-decoder architecture similar to single-phase analysis in internal made possible using a
139 patients 3D-U-Net. validation, test, and independent multiphase fusion DL
Test set:134 patients validation data. model with automatic phase
selection.
Allgaier German - No patients were The work simulation focuses on Craniotomy was generally accepted The provision of a VR
etal.® y included. There craniotomy and head placement. This but could benefit from improvements system for craniotomy,
were 4 individuals  study chose to create a virtual OR and use  in hand and arm positioning and the utilizing an HMD to create
who performed a a VR HMD in order to create a more ability to mill the sphenoid bone. an immersive training
specific type of VR. immersive experience than existing experience, is shown.
simulations that use haptic devices and
stationary stereoscopic displays.
Lei and China Diagnostic 40 Subjects This study introduces 2 models for Both proposed methods were able to The study employed DL,
Yang?® diagnosing 1As, the first model is a 3D U- locate and detect aneurysm specifically the U-Net and

Net algorithm designed to quickly
diagnose and label potential intracranial
aneurysm locations in 3D TOF MRA
image sequences and the second model is
a 3D CNN for intracranial aneurysm
classification with a simple structure
to avoid overfitting.

successfully with U-Net’s better
performance in diagnosing and 3D
CNN’s better performance in
positioning.

3D CNN network models,
to automatically label
intracranial aneurysm MRA
images. With the U-Net
algorithm showing
agreement with manual
labeling.

https://cjn.tums.ac.ir 04 January
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Table 2. Summary findings of studies included in this scoping review (Part I) (continue)

Author Country Type of Population DL model Outcome Conclusion
study
Li China Retrospective Training set; 120 - Model A+B demonstrated a slightly Combining radiomics and
et al.® patients higher AUC than individual models, traditional morphological
Test set: 107 while Model A+C did not show a features proved effective in
patients notable improvement. identifying intracranial
Combining radiomics and traditional aneurysm instability.
morphological features proved
effective in identifying intracranial
aneurysm instability.
Relying solely on Radiomics-derived
morphological features is not
recommended. Notably, the
Radiomics-based models did not
outperform the model using traditional
morphological features
Tian China Retrospective  Control group: 393 Three machine learning algorithms With ANN showing the best Machine learning
etal.% Complication (ANN, RF, and LR) were trained on the  performance among other algorithms,  algorithms may accurately
Group: 48 expanded training set using ten-fold this study found significant features predict periprocedural
cross-validation and grid search for for the prediction of periprocedural problems.
hyperparameter optimization. complications.
Wu China Training set: 1205 The study utilized a cascade model for The findings suggest the feasibility of ~ Multichannel information
etal.®? CTA images aneurysm detection, initially employinga  the pipeline for potential clinical use, can improve the
Test set: 303 CTA fine-tuned feature pyramid network aiding radiologists in aneurysm performance of aneurysm
images (FPN) for candidate detection. Machine detection and the classification of detection.
learning and deep learning-based rupture ruptured and unruptured aneurysms.
classification methods were employed to
distinguish between ruptured and
unruptured aneurysms.
Kim Korea Retrospective 343 Patients Explainable artificial intelligence (XAl) In the proposed model, the Aneurysm size and age
etal.®® was used to analyze the contribution of relationship between aneurysm size, were identified as the most
risk factors on the development of CAV. age, and CAV in individuals with significant influencers.
aSAH was quantitatively examined.
Ou China Prospective 182 Patients Some traditional ML algorithms like Aneurysm size, use of SAC, and By demonstrating that the
etal.® SVM, K-Nearest Neighbors, Decision posterior circulation were significant AutoML-derived model

Tree, Artificial Neural Network, RF, and
Naive Bayes were used. Also, the
automated machine learning named
TPOT was used.

factors in predicting recanalization.
The AutoML-derived model
outperformed other models.
The performance of autoML might
outperform that of conventional
statistical and manually constructed
machine learning models.

accurately predicts
treatment outcomes, the
study established the
viability of employing
AutoML for aneurysm
treatment outcome
prediction.
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Table 2. Summary findings of studies included in this scoping review (Part ) (continue)
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Author Country Type of Population DL model Outcome Conclusion
study
Pennig German  Retrospective Training set: 68 Three 3D CNNs based on DeepMedic The statistical analysis showed a The DLM considerably
etal.®® y patients were utilized in the study, namely significant improvement with increased radiologists'
Test set: 104 DLM-Orig, DLM-Vess, and DLM-LDim, DLM assistance. aneurysm detection in
patients each trained on CTA datasets Results imply that incorporating deep patients with aSAH,
with distinct inputs. learning assistance might be a particularly for secondary
beneficial addition that improves aneurysms.
the precision of aneurysm
identification in patients with aSAH.
Afzal USA - - The proposed Biomed-Summarizer Multiclass classifier had better Evaluation results indicate
etal.® introduces a novel framework that performance than traditional machine- superior performance
combines a prognosis quality recognition learning in classifying categories. compared to existing
model with a clinical context-aware approaches.
model for intelligent and context-enabled
summarization of biomedical text. It
employs a DNN for quality recognition,
a bidirectional long-short term memory
recurrent neural network for clinical
context awareness, and calculates
similarity between query and PICO
text sequences.
Chen China Retrospective Training set: With the aim to predict the individual The study indicates varying The models' ability to make
etal.¥’ 807 patients rupture status of UIAs, models based on performance for different models predictions is significantly
Internal validation: traditional LR and ML algorithms across different datasets in influenced by
200 patients combining clinical, morphological, and predicting the risk of rupture hemodynamic factors.
External validation: ~ hemodynamic information are built and, related to aneurysms.
108 patients then, tested in internal and external In prediction models integrating
validation datasets. clinical, aneurysm morphological, and
hemodynamic characteristics, ML
techniques did not outperform
traditional LR in determining the
rupture state of UIAs.
Chen China Diagnostic Training dataset : The paper introduced a CAD system According to the proposed method’s ~ Using contrast-unenhanced
etal.® 76 patients designed for cerebral aneurysms in TOF-  results in the internal and external test, time-of-flight MRA
Internal test dataset:  MRA. The system offers clinicians a fully the method has the potential to images, the proposed
20 patients automated process, generating (1) a three- detect aneurysm. computer-assisted detection

External test
dataset: 35 patients

dimensional mesh model of the
intracranial artery for hemodynamic
analysis and (2) identification of
suspected aneurysm areas using an FCN-
based network.

There is potential for routine physical
examinations to screen for aneurysms
using this technique.

system may locate possible
aneurysm sites on its own.
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Table 2. Summary findings of studies included in this scoping review (Part ) (continue)

Author Country Type of Population DL model Outcome Conclusion
study
Detmer USA, Training set: This study compared alternative ML Despite variations in rankings, The LRM demonstrated a
etal.®® Japan, 1061 patients classifiers for aneurysm rupture status statistical tests did not find significant comparable level of
Colombi External validation:  discrimination to a previously constructed differences in variable importance performance to other ML
a 203 patients aneurysm rupture logistic regression among the classifiers. classifiers, indicating its
probability model (LRM). Additional data, such as those potential for assessing
relevant to the aneurysm wall, may aneurysm rupture.
be required in order to further
enhance the predictions.
Duan Japan Diagnostic 4 ICA Patients and Deep Learning DL-MRA was comparable to time-of- MRA generated through
etal.% 11 Healthy people This study designed a mapping flight MRA (TOF-MRA), and both DL from 3D synthetic MRI
function by combining a U-net were superior to linear-MRA. data effectively visualized
model with a single convolution. major intracranial arteries,
comparable to time-of-
flight MRA (TOF-MRA).
Jin China Retrospective  Model development The network structure is based on a The system was shown to be highly DNN techniques have been
etal.® set: 347 patients general U-shaped design for medical sensitive in identifying cerebral successfully applied to the
Test set: image segmentation and detection. The aneurysms. automatic segmentation and
146 patients network includes a fully convolutional detection of aneurysms in
technique to detect aneurysms in high- 2D DSA pictures.
resolution DSA frames.
Lv China Cross- 65 Patients The models include RFs, Neural Gradient boosting had the best Size ratio, PHASES score,
etal.? Sectional Networks, Generalized Linear Model, performance among machine learning  and mean wall shear stress
Partial Least Squares, Gradient Boosting models in predicting wall at the aneurysm wall were
Machines, SVM, Linear Discriminant enhancement. identified as crucial
Analysis, Mixture Discriminant Analysis, predictors for wall
and K Nearest Neighbors. enhancement in cerebral
aneurysms using a machine
learning approach.
Ou China Retrospective 374 Patients Machine learning methods, including XGBoost had the best performance Utilizing a machine
etal.*® SVM, artificial neural network, and and key predictors for rupture learning model to assess the
XGBoost, along with conventional included location, size ratio, risk of aneurysm rupture is
logistic regression, were used to create and triglyceride level. feasible.
prediction models. The results point to the possibility
of improving the treatment of
unruptured aneurysms
Podgorsak USA  Retrospective Training set: A CNN architecture was implemented In parametric imaging procedures, CNN can effectively and
et al.4 250 DSA Images using Keras for semantic segmentation.

Test set: 100
DSA Images

CNN segmentation of aneurysms
and the surrounding vasculature
from DSA images is a non-inferior
method compared to manual
contouring of aneurysms.

accurately segment saccular
aneurysms and surrounding
vasculature from DSA
images
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Table 2. Summary findings of studies included in this scoping review (Part 1) (continue)

A. Jafarpour, et al.

Author Country Type of Population DL model Outcome Conclusion
study
Poppenberg  USA  Translational Training set: 94 The study utilized LASSO, K-Nearest In the study, feature selection using Predictive mode
etal.* subjects Neighbors, RF, and SVMs. LASSO identified 37 IA-associated enhancements were done
Test set: 40 subjects transcripts in the training cohort. by employing LASSO for
The RF model outperformed othersin  feature selection and robust
both training and testing cohorts. machine learning
Importantly, comorbidities and techniques.
demographics did not significantly
impact IA prediction.
Rajabzadeh- USA  Retrospective 47 Patients The study developed a rupture The RRS is not a predictor of rupture The study underscores
Oghaz discriminator model for 1As, identifying 3 but serves as a data-driven model RRS's clinical utility as an
et al.% significant features: aneurysm size ratio, assessing the similarity of UIAs to adjunctive tool for
time-averaged normalized WSS, and OSI. ruptured ones in morphology and managing UIAs in
hemodynamics. real-world scenarios.
Shi China Retrospective Internal Validation The study introduced DAResUNet, a 3D When compared to human experts, The proposed DL-based
etal#’ sets: 2355 subjects CNN, designed for the segmentation of the suggested DL-based model for model for automated
(There are 5 separate  1As from digital subtraction CTA images. automated intracranial aneurysm detection and segmentation
cohorts in this group) diagnosis and segmentation of 1As demonstrated higher
External Validation showed higher patient-level and patient-level sensitivity and
sets: 674 subjects lesion-level sensitivity. lesion-level sensitivity
(There are 3 separate compared to human experts,
cohorts in this group) suggesting its potential to
reduce their workload.
Bhurwani USA Retrospective 163 Patients A DNN was trained to predict the The results indicate the possibility API data was analyzed
etal.*® binary outcome of IA occlusion to forecast the outcome of an with DNNSs, suggesting the
(occluded/unoccluded). intervention in real time during potential to correlate API
surgery by comparing API parameters with blood
characteristics with blood flow. flow and predict
intervention success in real-
time during surgery.
Wu USA Retrospective Training set: A two-step model was developed for Compared to an available model, CADIA displayed
etal.*® 436 patients IA detection: a 3D RPN to locate IAs and the new model showed statistically commendable diagnostic

Validation set:
50 patients
Internal testing:
60 patients
Testing:
670 patients

3D DenseNets for classification. DPN
was used for the detection step, and
DenseNet for probability prediction
at suspicious locations.

higher patient-level accuracy,
sensitivity, and specificity.

performance for detecting
and localizing I1As.
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Table 2. Summary findings of studies included in this scoping review (Part I) (continue)

Author Country Type of Population DL model Outcome Conclusion
study
Xia China Retrospective Training set: The study utilized a RF machine learning  Patient factors such as age, ventilated  Poor outcomes are found to
etal.>° 485 patients algorithm for predicting clinical outcomes breathing status, WFNS grade, and be significantly associated
Internal testing: after the rupture of ACoA aneurysms. Fisher grade are identified as with patient age, breathing
122 patients significant predictors of poor status, WFNS grade, and
External Validation: outcomes after the rupture of Fisher grade, while
202 patients ACOA aneurysms. morphological parameters
of the aneurysm are not
independent predictors.
Yang 103 Patients The study introduced a surface-based DL While there are still issues with Employing a two-step
etal.> framework that combines human small aneurysms, the surface-based approach, involving
intervention with automated processes. segmentation method performs better classification and
The system samples 3D vessel surface than the volume-based approach in segmentation using
fragments, classifies them using the most situations. advanced point-based DL
PointNet++ DL network to distinguish Overall, the method improves networks, the proposed
those with and without aneurysms, and segmentation accuracy by efficiently framework outperforms
applies surface segmentation (SO-Net) to filtering out non-aneurysmal existing volume-based
fragments containing aneurysms. components. methods.
Zeng China 300 original This paper utilizes a DL approach for This approach allows training on Evaluation revealed
etal.>? sequences with 263 intracranial aneurysm detection in a 2D CNN directly, avoiding the effective improvement in
aneurysms 3D-RA, employing a SIF method. computationally expensive 3D-CNN, aneurysm detection
by leveraging time series with evident  accuracy with SIF features,
frame-to-frame correlation. The but careful consideration
results demonstrate the practicality of the upper limit of scale is
and effectiveness of the SIF feature. necessary to avoid
introducing redundant
information.
Zhu China Retrospective 1897 ICA Three machine learning models-RF, Machine learning models Machine learning models
etal.5® SVM, and feedforward ANN-were outperformed statistical LR and the surpassed traditional
developed for assessing 1A stability. PHASES score and resulted in the statistical methods (LR)
potential of machine learning to and the PHASES score in
enhance clinical decision-making for assessing intracranial
IA stability assessment. aneurysm stability.
Duan China Diagnostic Training set: In this study, a two-stage CNN-based The proposed method had better CAD architecture is able to
et al.> 241 subjects detection network was developed to accuracy than classical DIP. help physicians quickly and
Test set: 40 subjects implement the automatic detection of effectively diagnose 1As.
intracranial aneurysm on DSA images.
Hanastgka Japan - Linear SVM was utilized for classifying.  Lung nodules and cerebral aneurysms Two medical lesion
et al.

were successfully identified using the
suggested technique.

identification applications
demonstrated the high
general versatility of the
HoTPiG image feature set.
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Table 2. Summary findings of studies included in this scoping review (Part 1) (continue)

A. Jafarpour, et al.

Author

Population

DL model

Outcome

Conclusion

Liu
et al.®

Liu
etal.’

Castro
et al 8

Meuschke
et al.®®

Haraguchi
et al.®

Country Type of
study
China Retrospective
China Retrospective
USA Retrospective
Germany -
Japan -

368 ICA

594 ICA

5,589 patients were
classified as having
aneurysms, and
54,952 controls
were matched to
those patients. There
were 300 patients
for validation.

The whole Morphology Prediction
Models were built using general linear
and ridge regression, and were dubbed the
GLM model and the ridge model. The
partial morphology model was created
using Lasso regression and was given the
term Lasso model.

A two-layer feed-forward ANN was
constructed to predict the rupture risk of
ACOM aneurysms.

Utilizing NLP in conjunction with the
EMR, patients with cerebral aneurysms
and their matched controls were
accurately identified.

A new mechanical coil insertion
system was developed for the
single-operator control.

Lasso regression identified flatness as
the most crucial morphological feature
for predicting aneurysm stability.
For unstable aneurysms, spherical
disproportion was higher in patients
with hypertension.

In training, validation, testing, and
overall datasets, the ANN
performance was assessed using ROC
analysis, which showed strong
classification abilities for both
ruptured and unruptured samples.

Compared to models that exclusively
used coded or NLP variables, the
suggested model performed better.
The study demonstrates how a
combination method utilizing
NLP and ICD codes can correctly
identify and categorize patients
with cerebral aneurysms.

The tool was user-friendly for all
experts, and they expressed a
willingness to use it for analyzing
cerebral stress tensors.

The developed coil insertion system
operated smoothly without issues.

Flatness was identified as a
key determinant for
predicting aneurysm

stability. Machine learning

models, especially with
data from multiple centers,
could enhance the
predictive accuracy of
aneurysm stability.
The management of
unruptured ACOM
aneurysms may be made
easier by this ANN's good
performance and useful tool
for predicting rupture risk
in ACOM aneurysms.
Using NLP and EMR to
collect a substantial group
of patients with 1As and
corresponding controls and
proposed algorithms has the
potential to be adapted for
various diseases.

This study introduced a
framework for assessing the
potential rupture risk of
cerebral aneurysms and aims
to facilitate the introduction
of wall stress into clinical
discussions by offering novel
glyph visualizations of tensor
information.

The developed mechanical
coil insertion system
demonstrated successful
endovascular embolization of
IAs in an in vitro experiment
without any issues.
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Table 2. Summary findings of studies included in this scoping review (Part 1) (continue)

Author Country Type of

DL model

Outcome

Conclusion

Johnson USA
et al bt

Three patient-
specific cerebral
aneurysm models

were created.

The paper introduces an innovative
method to model weakened cerebral
aneurysm walls by creating an equivalent

wall thickness.

The results show that the use of the

equivalent wall thickness provides a

more accurate rupture site prediction
than utilizing a uniform wall

thickness.

A novel approach for
estimating equivalent wall
thickness in cerebral
aneurysm models involves
parameterizing surfaces and
deforming a healthy model
mesh to match an
aneurysm's shape.

IAs: Intracranial aneurysms; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; MLP: Multi-layer perceptron; TOF-MRA: Time-of-flight magnetic resonance
angiography; OR: Operating room; HMD: Head-mounted display; VVR: Virtual reality; CAV: Cerebral angiographic vasospasm; HU: Hounsfield units; TPOT: Tree-based Pipeline Optimization; UIAs:
Unruptured intracranial aneurysms; ML: Machine learning; CAD: Computer-aided diagnosis; FCN: Fully convolutional network; DSA: Digital subtraction angiography; RRS: Rupture risk score; WSS:
Wall shear stress; OSI: Oscillatory shear index; DNN: Deep neural network; RPN: Region proposal network; DPN: Dual-pass network; ACoA: Anterior communicating artery; WFNS: World Federation
of Neurosurgical Societies; 3D-RA: 3D-Rotational angiography; SIF: Spatial information fusion; DIP: Digital image processing; CAD: Computer-aided diagnosis; ICA: Internal carotid artery; PCoA:
Posterior communicating artery; NLP: Natural language processing; EMR: Electronic medical record; DL: Deep learning; MRA: Magnetic resonance angiography; ML: Machine learning

Table 2. Summary findings of studies included in this scoping review (Part 11)

Author  Quality of

AUC

Preprocessing algorithm

Aneurysm details

evidence
Wang Moderate
et al.13 risk
Chen Moderate
etal.? risk
Feng Low risk

etal.22

Internal validation:

Test set: 0.970

Training set
SVM: 0.86
RF: 0.85
MLP: 0.90
Test set
SVM: 0.85
RF: 0.88,
MLP: 0.86

Convert CT angiograms from DICOM to

numpy matrices;
Normalize grayscale values using
DICOM window width and level;
Preprocess with Dr. Wise-CTA
for arterial tree extraction and
vessel naming;

Extract 3D image patches along
the arterial vasculature;
Crop images to 80x80x80 pixels;
Design patches to cover
most aneurysms

Aneurysm type:
Saccular, Fusiform
Size:
<3 mm: 34n
3-7 mm: 946n
7-10 mm: 454n
> 10 mm: 408n
Location: ACA, ACoA, MCA,
PCA, PCoA, ICA, Basilar A,
Vertebral A, and Others

Size: -
Location: ACA, ICA,
MCA, PCA
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Table 2. Summary findings of studies included in this scoping review (Part I1) (continue)

A. Jafarpour, et al.

Author  Quality of Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details
evidence
Ham Moderate Internal dataset: 0.893  Internal dataset: 0.926 - Skull-stripping, signal intensity Size: Mean size of 2.6 mm in
etal.?® risk external datasets: 0.856 external datasets: normalization, and N4 bias correction Internal Validation group
(with a 2:1 ratio of 0.879 Location: -
normal to aneurysmal (with a 2:1 ratio of
patches) normal to aneurysmal
patches)
Jiang Moderate - - SVM:0.86 - All aneurysms were
et al.* risk GLM: 0.82 saccular aneurysms.
GLMNet: 0.83 Size: 4-25 mm
RF: 0.78 Location: ICA, MCA, ACA
Liu Moderate - 92.3% - Conversion from DICOM to Size: Average diameter
etal.® risk NIfTI format; 7.1 mm
Manual segmentation of aneurysms; Location: ICA (Anterior
Determination of intracranial circulation aneurysm), MCA,
artery boundaries; Posterior circulation aneurysm
Image cropping based on
determined boundaries;
Normalization of cropped images
using MATLAB
Patel Moderate - - - Dataset was first preprocessed to generate Size: 6.01 mm mean
etal.?® risk co-registered, re-sampled, ROIs of the Location: ICA, MCA, PComA,
major arteries of the circle of Willis, OpthA, AComA
which was followed by ground truth
generation and data normalization.
Shao - - - - - -
etal.?’
Allgaier - - - - - -
etal.?®
Lei and MRA: 100% MRA: 95.87% - - -
Yang?® DSA: 86.01% DSA: 91.46%
Li Low risk Model A: 87.3% Model A: 77.8% Model A: 0.909 - Unruptured saccular aneurysm
etal.>° Model B: 73.5% Model B: 61.1% Model B: 0.739 Size: median of the maximal
Model C: 65.1% Model C: 41.2% Model C: 0.552 diameter of the aneurysm
(Only test set was (Only test set was (Only test set was 3.9 mm
reported) reported) reported) Location: ICA/PCOM,
AC, PC, MCA
Tian Moderate - - ANN: 0.761 - Size: 6.92 mm
etal.®! risk RF:0.735 Location: Anterior circulation,
LR: 0.668 Posterior circulation, Distal

(Only test set was

reported)

aneurysm
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Table 2. Summary findings of studies included in this scoping review (Part 11) (continue)

Author  Quality of Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details
evidence
Wu Moderate - 90% for 1 false 0.906 Truncate intensities of all CTA Size
et al.®? risk positive per image images between HU Training set (6.2 mm)
Resample each CTA image into isotropic Test set (6.9 mm)
resolution using B-spline interpolation. Location: -
Kim Moderate 0.77 0.78 0.88 - Aneurysmal subarachnoid
etal.®® risk hemorrhage (aSAH)
Size: -
Location: Ophthalmic A, Distal
ICA, PCoA, Anterior choroidal
Artery, ICA bifurcation, M1 (first
segment of the middle cerebral
artery), MCA bifurcation, Al
(first segment of the anterior
cerebral artery), ACoA, Distal
ACA, Vertebral A, Posterior
inferior cerebellar A, Basilar tip
Ou Low risk - 1.000 - Normalization Size: 5.3 mm
et al.3 Location: ICA, MCA, ACA
and AComA, PComA,
Posterior circulation
Pennig High risk - 85.7% - Brain extraction with SPM8; Size: mean volume 129.2 mm’
etal.® Image standardization and Location: AC. ICA. ACA
intensity normalization; MCA PC ’
Multi-scale vessel enhancement '
filter application;
Normalization of CTA image and
vessel enhanced images;
Afzal High risk - - - - -
etal.®
Chen Low risk LR: 74.6% LR: 83.0% LR: 0.886 - Size: mean of 5.6 mm
etal.¥ RF: 81.8% RF: 69.8% RF: 0.871 Location: PCoA, ACoA, ICA,
MLP: 76.4% MLP: 79.3% MLP: 0.851 MCA and Others
SVM: 83.6% SVM: 67.9% SVM: 0.863
(Only external validation (Only external (Only external
numbers is reported.) validation numbers is  validation numbers
reported.) is reported.)
Detmer 0.770-0.925 0.348-0.758 MLP: 0.83 - -
etal.® (from lowest to (from lowest to LRM: 0.82
highest ML) highest ML) (Best two ML)
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Table 2. Summary findings of studies included in this scoping review (Part 11) (continue)

A. Jafarpour, et al.

Author  Quality of Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details
evidence
Chen Low risk - Internal test dataset: - - Unruptured cystic aneurysm
etal.® 94.4% Size: Training dataset 6.86 mm,
External test dataset: Internal test dataset 6.30 mm,
82.9% External test dataset 6.48 mm
Locations: ICA, MCA, ACA,
PCA, Basilar A, Vertebral A
Duan - - - - Size: 3.7 mm mean
et al. Location: ACA, MCA, ICA
Jin Moderate - 89.3% - - Size: -
et al.4 risk Location: Sidewall aneurysms,
Bifurcation aneurysm
Lv Moderate  Values ranged from 0.50  Values ranged from  Values ranged from R-project library ‘caret’ was used to -
et al. risk (knn) to 0.75 (gbm 0.73 (mda and 0.68 (pls) to perform the preprocessing steps to center
and glm) svmRadial) to 0.91 0.98 (gbm) (subtracting the mean) and scale (divided
(rf, Ida and knn) by the standard deviation) the data.
Ou Moderate XGBoost: 77.0% XGBoost: 90.9% XGBoost: 0.881 - Size: Unruptured group 3.63
etal.*® risk ANN: 78.0% ANN: 74.0% ANN: 0.837 mm mean
SVM: 81.0% SVM: 72.6% SVM: 0.838 Ruptured group 4.33 mm mean
LR: 83.0% LR: 72.0% LR: 0.801 Location: ICA, MCA, ACA,
PHASES: 64.0% PHASES: 79.7% PHASES: 0.758 PCA, BA, VA, AComA, PComA
Podgorsak ~ Moderate - - - - -
etal* risk
Poppenberg - - - - -
etal.®
Rajabzadeh-  Moderate - - - - Size: 3.95 mm mean
Oghaz risk Location: ACA, AComA,
et al.*6 ICA, MCA, PComA, Posterior
circulation
Shi Moderate  Internal cohort 1: 74.7% - - - Size:
etal.% risk Internal cohort 2: 83.9% Internal cohortl: 4.3 mm

Internal cohort 3: 85.5%
Internal cohort 4: 87.9%
Internal cohort 5: 89.7%
NBH cohort: 71.1%
TJ cohort: 71.1%
LYG cohort: 74.6%

Internal cohort 2: 4.8 mm
Internal cohort 3;: 4.2 mm
Internal cohort 4: 3.5 mm
Internal cohort 5: 5.1 mm
NBH cohort: 4.4 mm
TJ cohort: 5.3 mm
LYG cohort: 4.4 mm
Location: MCA, ACo0A, ICA,
PCoA, VBA, CA, ACA, PCA
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Table 2. Summary findings of studies included in this scoping review (Part 11) (continue)

Author  Quality of Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details
evidence
Bhurwani  Low risk 0.57 0.92 - - Size: -
etal.%® (Only in Peak Height ~ (Only in Peak Height Location: ICA, ACA, ACoA,
mode is reported) mode is reported) MCA, PCA, PCoA, VA, BA
Wu Moderate 0.564 0.893 0.873 - Size:
etal.* risk (At 1 FPPV) (At 1 FPPV) (Across all cohorts)
2.5-2.9 mm: 181 IAs
3-5 mm: 349 |As
5-10 mm: 287 1As
>10 mm: 55 IAs
Locations: ICA, MCA, ACoA,
PCoA, BA, ACA, PCA
Xia Moderate Internal Test: 82.8% Internal Test: 78.3% - - Only Ruptured ACoA aneurysms
etal.*® External Test: 83.1% External Test: 73.8% were included.
Size:
mm in Good Outcome group
5.7 mm in Poor Outcome group
Yang - - Sensitivities of the - Four preprocessing approaches A, B, C, -
et al. aneurysm class of and D were applied. A has only been
five networks are applied as a necessary step in
73.63%, 81.08%, DeepMedic, while B,C, and D, were
79.49%, 86.11%, and performed as additional masks for the
80.77%, skull-stripping of the TOF-MRA images.
Zeng - 98.19% 99.38% - Gamma correction was performed on the Size: 2-40 mm
et al.>? original image and then its intensity Location: -
stretched or shrank to the right levels.
Digital subtraction was done to the original
data by the pre-contrast sequences.
Zhu Low risk RF: 90.9% RF: 54.4% RF: 0.850 - Size:-
etal.>® SVM: 88.3% SVM: 61.2% SVM: 0.858 Location: ICA, MCA, ACA,
ANN: 92.9% ANN: 51.5% ANN: 0.867 AComA, Posterior circulation,
Classic LR: 88.3% Classic LR: 33.9% Classic LR: 0.818 PComA
PHASES: 95.4% PHASES: 9.7% PHASES: 0.589
Duan - - - 0.942 - Size:
etal. <5.0 mm: 44
5.0-9.9 mm: 114
10.0-24.9 mm: 101
>25.0 mm: 2

Location: PCoA region of ICA
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A. Jafarpour, et al.
Table 2. Summary findings of studies included in this scoping review (Part 11) (continue)

Author  Quality of Specificity Sensitivity AUC Preprocessing algorithm Aneurysm details
evidence

Hanaoka - - 80% when the - - -

etal.>® number of false

positives was three
per case for both

applications
Liu - - - General linear: - Size: 4 mm-8 mm
et al.%® 0.856 Location: ACoA, PCoA,
Ridge: 0.856 Posterior Circulation, MCA, ICA
LASSO: 0.852
Liu Moderate 92.6% 95.0% - - Size: 2.20 mm vessel size in
etal.>’ risk unruptured group
1.94 mm vessel size in ruptured
group
Location: Anterior

Communicating Artery
Castro Low risk - 0.78 0.946 - -
et al 8
Meuschke - - - - - -
et al.>®
Haraguchi - - - - - -
et al 50
Johnson - - - - - -
et al .t

IAs: Intracranial aneurysms; CNN: Convolutional neural network; SVM: Support vector machine; RF: Random forest; MLP: Multi-layer perceptron; TOF-MRA: Time-of-flight magnetic resonance
angiography; OR: Operating room; HMD: Head-mounted display; VR: Virtual reality; CAV: Cerebral angiographic vasospasm; HU: Hounsfield units; TPOT: Tree-based Pipeline Optimization; UIAs:
Unruptured intracranial aneurysms; ML: Machine learning; CAD: Computer-aided diagnosis; FCN: Fully convolutional network; DSA: Digital subtraction angiography; RRS: Rupture risk score; WSS:
Wall shear stress; OSI: Oscillatory shear index; DNN: Deep neural network; RPN: Region proposal network; DPN: Dual-pass network; ACoA: Anterior communicating artery; WFNS: World Federation
of Neurosurgical Societies; 3D-RA: 3D-Rotational angiography; SIF: Spatial information fusion; DIP: Digital image processing; CAD: Computer-aided diagnosis; ICA: Internal carotid artery; PCoA:
Posterior communicating artery; NLP: Natural language processing; EMR: Electronic medical record; DL: Deep learning; MRA: Magnetic resonance angiography; ML: Machine learning
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Identification of studies via databases and registers

Identification

Records identified from
chosen databases (n = 797)

Records removed before screening:
Duplicate records removed (n = 267)

A 4

Records screened (n = 530)

A\ 4

Records excluded (n = 465)

Screening
v Reports not included due to lack
Reports sought for retrieval (n = 65) » of sufficient/relevant information
in full text screening (n = 24)
v
Included Studies included in the review (n = 41)

Figure 1. PRISMA flow diagram of the study selection procedure

Studies classified as “high risk of bias” were
generally limited to single-center, retrospective
designs with small samples or unclear inclusion
criteria. The predominance of moderate to high risk
of bias among outcome prediction studies in
particular reduces the certainty of the evidence base
for neurosurgical outcomes. As a result, conclusions
regarding the clinical utility and generalizability of
DL models for post-surgical or prognostic
applications should be interpreted with caution.
Risk of bias was less pronounced in larger, multi-

center diagnostic studies, which contributed more
robust evidence to the review’s principal findings.
Imaging  modalities and  preprocessing
approaches: The most frequently used imaging
modality was CTA, followed by MRA, DSA, and
3D rotational angiography. Image preprocessing
techniques were frequently applied to standardize
inputs across varying acquisition protocols.
These included skull stripping,  vessel
enhancement, signal normalization, DICOM-to-
NIfTI conversion, and manual segmentation.

[China (22)]
Nyt prea (2)
"

(lapan ()]

Australia (1) /

Figure 2. Global distribution of deep learning (DL) studies on intracranial aneurysms (1As)

This map illustrates the geographic origins of studies included in the present scoping review. The size of each circle corresponds
to the number of studies affiliated with each country, with text labels indicating the absolute count. Note that the sum of country
counts exceeds the total number of unique studies (n = 42) because multi-country collaborations are credited for all contributing
countries. The figure highlights the predominance of research output from China and the United States, and reveals areas with

limited representation in the global literature.
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Some studies employed multi-phase fusion
techniques to improve input quality and reduce
noise, particularly in models using volumetric
CTA data.

DL architectures and analytical frameworks:
CNNs were the most widely used architecture,
applied in over half of the included studies. Three-
dimensional CNN models such as DeepMedic,
DAResUNet, and U-Net variants were commonly
implemented for aneurysm detection and
segmentation tasks, often achieving high levels of
accuracy and sensitivity. Hybrid models
combining CNNs with support vector machines
(SVMs), random forests (RFs), or multilayer
perceptrons were also explored to enhance
classification and reduce overfitting. In several
instances, these combinations demonstrated
superior diagnostic performance compared to
models relying solely on DL. A smaller subset of
studies applied unsupervised learning, AutoML
pipelines, or reinforcement learning-based
frameworks, indicating a progressive trend toward
fully automated and adaptive systems.

Clinical applications (detection, segmentation,
and risk stratification): The most common clinical
application was aneurysm detection and
segmentation. DL-based models for this purpose
were evaluated in 24 studies, with many reporting
sensitivity rates above 90% and AUC values
ranging from 0.85 to 0.98. Some models, such as the
one developed by Shi et al., outperformed human
readers in both patient-level and lesion-level
sensitivity.#” Segmentation performance was also
strengthened in studies that employed 3D
patch-based input, multi-scale feature extraction,
and false-positive reduction modules.

Moreover, 13 studies focused on rupture risk
prediction using DL, often incorporating
geometric, hemodynamic, and clinical parameters.
These  models  frequently  outperformed
conventional risk scoring systems, such as the
PHASES score, in predicting rupture likelihood.
For example, Liu et al.” developed a feedforward
artificial neural network capable of predicting
rupture risk in anterior communicating artery
aneurysms with sensitivity and specificity above
90%. Other studies, such as those by Feng et al.?2
and Zhu et al.,® used radiomics-derived
morphological features in conjunction with DL
models to assess aneurysm instability, achieving
comparable or improved predictive performance
relative to logistic regression.

DL was applied to outcome prediction
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following surgical or endovascular treatment
in 8 studies. These models aimed to predict
periprocedural complications, long-term
recanalization, and occlusion outcomes. Predictive
variables included both patient-level features and
procedure-specific parameters such as aneurysm
morphology and blood flow dynamics. The study
by Bhurwani et al. exemplified the use of
intraoperative data for real-time outcome
prediction using a deep neural network (DNN)
trained on angiographic parametric imaging.*8

Natural language processing (NLP) and
clinical informatics integration: A subset of
studies extended DL applications to broader
clinical informatics by incorporating electronic
medical record (EMR) data and NLP techniques.
For instance, Castro et al. demonstrated that NLP
applied to EMRs could effectively identify patients
with cerebral aneurysms and their matched
controls with a sensitivity of 94.6%, outperforming
models based solely on coded variables.5® These
efforts highlight the potential of DL to support
automated case detection, large-scale cohort
construction, and integrated decision support in
clinical environments.

Model validation and petformance metrics:
Despite generally strong performance across the
included studies, validation approaches were often
limited in rigor. While internal validation was
conducted in most studies through test set
separation or cross-validation, only 14 studies
reported using external validation datasets. Fewer
than 25% of studies employed independent control
groups. Reported performance metrics varied but
were generally favorable. Sensitivity values
typically ranged between 73% and 99%, with
specificity values between 54% and 98%. AUC values
frequently exceeded 0.85, although methodological
heterogeneity limited direct comparability.

Variability in aneurysm characteristics and
predictive inputs: There was notable heterogeneity
in how aneurysm characteristics were defined
and incorporated into models. Some studies
stratified by size, location, or aneurysm type
(e.g., saccular vs. fusiform), while others included
mixed cohorts without clear subcategorization.
Aneurysm sizes across studies ranged from < 3
mm to > 25 mm, and many studies did not report
rupture site, wall enhancement, or other
pathophysiologically relevant features. This
variability, along with inconsistent inclusion
criteria and imaging protocols, underscores the
challenge of synthesizing findings across studies
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and emphasizes the need for standardized
definitions and reporting.

Synthesis and emerging trends: The cumulative
evidence indicates that DL algorithms hold
considerable promise in advancing the detection,
classification, and management of [As. CNN-based
segmentation models consistently demonstrated
excellent diagnostic performance, and emerging
architectures, such as surface-based models and
attention-enhanced networks, have begun to
address challenges related to false positives and
aneurysm localization. The integration of clinical,
radiomic, and hemodynamic features into DL
frameworks has further enhanced their predictive
power, particularly in risk assessment and
treatment outcome forecasting.

Nevertheless, critical limitations persist. The
reliance on institution-specificc non-public
datasets restricts reproducibility, while the lack of
external and prospective validation weakens
generalizability. Few studies reported on model
explainability or integration within clinical
workflows, issues that will be crucial for
regulatory approval and adoption. Ethical
considerations, including patient data privacy and
the interpretability of model decisions, were also
underreported in the current literature.

Overall, the included studies demonstrate that
DL technologies are rapidly transforming the
landscape of neurovascular imaging and risk
stratification. While current models show high
diagnostic and predictive accuracy, their
translation into routine clinical practice will
require methodological standardization, access to
multicenter and open datasets, robust external
validation, and continued development of
interpretable, clinically aligned algorithms.

Thematic analysis of included studies: To
synthesize the diverse applications and
methodologies of DL across the included
literature, we conducted a thematic analysis based
on the extracted study characteristics. Seven key
thematic categories emerged, reflecting both
clinical relevance and methodological diversity
(Figures 3 and 4).

1. Clinical application domains

The included studies addressed 4 primary
clinical applications of DL in the context of IAs,
detection and segmentation, rupture risk
prediction, treatment outcome forecasting, and
automated patient identification using NLP.
Detection and segmentation were the most
common focus, observed in more than half of the
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studies. Thirteen studies explored rupture risk
stratification, while 8 evaluated DL models for
forecasting outcomes such as procedural
complications, occlusion success, or recanalization.
A smaller subset leveraged NLP models in
conjunction with electronic medical records to
identify aneurysm cases at scale.
2. Model architectures and analytical frameworks

A variety of DL architectures were employed,
including CNNs, ANNs, DNNs, and AutoML
pipelines. CNNs were the predominant model
type, particularly in 3D implementations
such as DeepMedic, DAResUNet, and U-Net
variants. Hybrid models that combined DL with
traditional ML classifiers (e.g., SVMs, and RFs)
were also common. A few studies explored
unsupervised learning and reinforcement
learning, indicating ongoing diversification in
computational approaches.
3. Validation strategy and evidence rigor

Validation approaches varied widely. While most
studies employed internal validation (e.g., hold-out
test sets or cross-validation), only 14 conducted
external validation using independent datasets.
Furthermore, less than one-quarter of the studies
incorporated control groups. This heterogeneity in
methodological rigor reflects differing levels of
evidence strength and reproducibility.
4. Imaging modalities and data inputs

The studies utilized a range of imaging inputs,
including CTA, MRA, DSA, and 3D rotational
angiography. CTA was the most commonly used
modality, often preprocessed using normalization,
skull stripping, and artifact reduction techniques.
Some studies employed multi-phase imaging or
computational fluid dynamics to enrich input
features, particularly in rupture prediction tasks.
5. Geographic and institutional distribution

The geographic distribution of studies was
heavily skewed toward East Asia, particularly
China, followed by the United States, South Korea,
and a few European countries. This concentration
suggests a strong regional research interest but
also raises concerns about potential population
and data biases that may limit generalizability.
6. Performance reporting and metric completeness

There was considerable variation in how model
performance was reported. Most studies included
sensitivity, specificity, and AUC, but fewer
provided Dice coefficients, false-positive rates, or
confidence intervals. Reporting quality was highest
in segmentation and detection studies and lower in
outcome prediction or NLP-based investigations.
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Figure 3. Thematic evidence map of deep learning (DL) applications in intracranial aneurysm research

This matrix visualizes the thematic classification of 42 studies included in the scoping review. Each row represents an
individual study (abbreviated by first author and year), and each column denotes one of four primary domains of application:
detection and segmentation, rupture risk prediction, treatment outcome prediction, and NLP/EMR-based patient
identification. Shaded cells indicate that a study contributed substantively to the corresponding thematic area. This map
highlights the concentration of research in detection-focused applications, while revealing gaps in external validation and
clinical integration in underrepresented domains such as outcome forecasting and EMR-driven case identification.

7. Focus on ruptured vs. unruptured aneurysms

Several studies explicitly focused on
unruptured aneurysms or specific subtypes, such
as anterior communicating artery aneurysms.
However, many studies did not clearly delineate
between ruptured and unruptured lesions. This
thematic ambiguity reflects a broader lack of
consensus in the field regarding the most clinically
actionable prediction targets.

https://cjn.tums.ac.ir

Discussion

Several studies have recently used DL models to
detect IAs wusing neuroimaging. Despite the
challenges posed by size and location variability,
image quality, imaging modality limitations, and
artefacts in imaging, researchers have consistently
reported high sensitivity, specificity, and accuracy.
However, biases and concerns with the datasets
restrict the overall diagnostic accuracy of this research.
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Figure 4. Model architecture versus clinical application in deep learning (DL) studies of intracranial

aneurysms (1As)

This stacked bar chart illustrates the distribution of DL model architectures (horizontal axis) mapped to their primary
clinical applications (stacked colors) across the included studies. CNN-based models are most frequently employed for
detection and segmentation tasks, while hybrid ML/DL approaches and ANN/DNN architectures demonstrate broader
use in rupture risk and outcome prediction. The chart reveals a relative underrepresentation of NLP/EMR-based
applications, underscoring the need for further exploration of clinical informatics integration in this domain

For example, several studies were conducted in
a single center, which could be a primary cause of
bias in the outcome.?081625> Additional constraints
included short test dataset sizes, small IAs in the
test dataset, type of studies, and reliance on
internal rather than external datasets.

Given the diversity of article types, no
consistency or uniformity was found in the
inclusion and exclusion criteria. In some of the
studies examined, the criteria regarding IAs were
based on factors such as the size of the
aneurysms,®? while in others, criteria were based
on the presence of certain types or specific
locations of IAs.? This nuanced approach to
criteria underscores the complexity and variability
inherent in the characteristics of IAs and their
potential impact on the outcomes of the DL
methods being investigated.

Additionally, within the scope of the reviewed
studies in this article, it is imperative to note that
only 2 of them incorporated a control group in
their methodology.%3* This deficiency in including
control groups can potentially introduce bias and
significantly influence the outcomes derived from
the proposed DL methodologies. Control groups
serve as essential benchmarks against which the
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effectiveness and efficacy of new interventions or
techniques can be evaluated. Consequently, the
absence of control groups compromises the
studies' internal validity and undermines their
findings' reliability and generalizability. In future
research  endeavors,  investigators = must
incorporate control groups systematically to
enhance the robustness and credibility of their
conclusions in DL methodologies.

Several studies included in this review were
conducted at a single center. A limitation of single-
centered studies is their potential lack of
generalizability to broader populations or varied
clinical settings, as they often reflect the
characteristics and practices unique to a specific
institution or patient population. Additionally, the
findings from single-centered studies may be
influenced by local biases or confounding factors,
necessitating validation across multiple centers to
establish robustness and applicability.

Despite the extensive utilization of various DL
models in multiple studies focusing on IA analysis,
a critical gap remains in the absence of a
comprehensive comparative study dedicated to
assessing the variability of results concerning
model architecture. Among the studies reviewed,
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CNN was the most used model.

A notable limitation across all the reviewed
studies is the exclusive validation of their DL
models on private datasets. This practice hinders
the independent verification of method
effectiveness and the assessment of result
variability concerning the utilized DL model
architecture. The inability to access code and
datasets from authors, often due to patient privacy
policies and regulatory constraints, further
compounds this issue, preventing researchers from
replicating findings or comparing methodologies
across studies effectively. However, it is essential
to note exceptions, such as the studies by Feng
et al.,22 Ham et al.,2> Chen et al.,?! and Shi et al.¥”

Aneurysmal subarachnoid hemorrhage is one
of the complications of a ruptured aneurysm, and
its mortality rate is significantly high. Furthermore,
developing a robust prediction model is necessary
to assess the rupture risk of aneurysms. On the one
hand, several studies have performed this process
using ML-based algorithms.?#2%65 On the other
hand, of the included studies in this review, the
number of articles that aimed to investigate this
section was insufficient.

Preprocessing was applied in approximately a
quarter of the studies. Unfortunately, the number of
these studies was not significant compared to the
number of studies included in this review, so it might
affect the outcome and inference of the studies.
Interpretability and the “Black-Box” challenge

Despite the impressive diagnostic and
predictive performance demonstrated by DL
models in IA research, their clinical integration is
fundamentally limited by the persistent
“black-box”  problem. Most DL models,
particularly deep CNNs, operate through highly
non-linear, high-dimensional feature spaces,
making it challenging—even for developers—to
elucidate the underlying logic of their outputs. The
opacity of these models undermines clinicians’
trust, as critical decisions must be explainable and
justifiable, particularly in high-stakes
neurovascular care. This interpretability gap
complicates error analysis, bias detection, and
model calibration, thereby impeding regulatory
acceptance and routine clinical adoption. The lack
of visual or quantitative explanation tools — such as
heatmaps, attention maps, or saliency analyses —in
the reviewed literature further amplifies this
challenge, highlighting an urgent need for
investment in explainable Al (XAI) frameworks
and clinician-in-the-loop validation studies.%36¢
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Limitations of internal-only datasets and lack of
multicenter validation

A substantial proportion of the included
studies relied exclusively on internal, single-
institution datasets for both model development
and validation. While this approach may be
sufficient for technical proof-of-concept, it
significantly limits the generalizability of findings.
Models trained and tested on a single dataset
are prone to overfitting, potentially capturing
site-specific = imaging  artifacts, acquisition
protocols, or population demographics that do not
translate across settings. The absence of
multicenter, external validation further restricts
the credibility and clinical applicability of these
models. Without rigorous testing on diverse,
independent cohorts, it is difficult to ascertain
whether the reported performance reflects genuine
clinical utility or is simply an artifact of local data
characteristics. This methodological limitation is a
major barrier to both academic benchmarking and
regulatory endorsement.”
Lack of benchmarking across models and
imaging platforms

Another critical gap identified in the current
literature is the lack of systematic benchmarking
across DL models, architectures, or imaging
platforms. Many studies introduce novel models
or variations but evaluate them only in isolation,
using  proprietary datasets and differing
performance metrics. This heterogeneity prevents
meaningful cross-study comparisons and impedes
consensus regarding best-in-class models or
optimal imaging modalities. Few studies provide
head-to-head comparisons between different DL
architectures (e.g.,, CNN vs. hybrid models) or
assess robustness across imaging types such as
CTA versus MRA. The field would benefit from
collaborative  benchmarking initiatives and
standardized public datasets, which would enable
transparent evaluation, facilitate reproducibility,
and drive collective progress toward clinically
reliable Al tools.86
Regulatory, ethical, and data privacy concerns

Clinical translation of DL in neurovascular
imaging is also hindered by significant regulatory,
ethical, and data privacy challenges. Most of the
reviewed studies do not address how their models
comply with existing data protection standards
(e.g., HIPAA, GDPR) or how they would manage
patient consent and data anonymization at scale.
The use of proprietary, locally stored imaging data
raises concerns about data security and
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re-identification risks, especially as model
complexity increases. Furthermore, the black-box
nature of many DL models presents regulatory
hurdles, as agencies such as the FDA increasingly
require explainability and robust post-market
surveillance for Al-driven devices. Without
frameworks for ongoing monitoring, auditing, and
real-world performance assessment, the path from
research prototype to approved clinical device
remains fraught with uncertainty.”
Deficit in outcome-based studies

Despite the manuscript’s stated emphasis on
“neurosurgical outcomes,” a striking deficit of
outcome-focused research was identified. Only a
small minority of the included studies directly
addressed post-surgical or prognostic applications,
such as predicting occlusion rates, recurrence, or
patient functional outcomes following intervention.
Instead, the majority of DL applications to date have
prioritized anatomical detection, segmentation, or
rupture risk stratification, with limited extension to
longitudinal or post-therapeutic endpoints. This
deficit represents a critical gap in the current
landscape, as outcome-based modeling is essential
for demonstrating the real-world value of Al in
neurosurgical ~ decision-making and patient
management. Future research must prioritize the
integration of perioperative and follow-up data, the
development of longitudinal prediction models,
and the validation of these approaches in diverse,
prospectively collected cohorts.2>62646571-73

Limitations: There were several limitations in
this study. First, only papers published in English
were included in this review, which might create
bias. Second, our investigation was limited to
reviewing papers available through open access,
thus overlooking any research inaccessible to a
broader audience. This approach might have
implications for the comprehensiveness and
representativeness of our findings. Third, the
research methodology involved investigation
across only 3 databases, with an additional
scrutiny of targeted pages within Google Scholar.
Fourth, the variation in the proposed and utilized
ML and DL model is another issue in this field.
Although numerous options exist for the use and
development of various models and algorithms
that might increase the accuracy and efficiency of
detection of IAs, this variant might affect the
precise outcome.
Limitations and challenges of DL models in
detecting IAs

The "black-box" problem, in which the methods
of data processing from the input to the output
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layers are not fully understood, is brought about
by the complex structure of DNN algorithms. As a
result, doctors could be hesitant to accept the
results of a classifier system like this "black-box."
Though guidelines and recommendations have
recently been proposed, there is currently no clear
legal consensus regarding the regulations for Al
and ML models, unlike medical devices.
Moreover, no clear legal guidelines are available
regarding the independent mathematical
interrogation and validation of outputs generated
by ML systems.”*

The legitimacy of the decision-making made
possible by ML models is also questionable
regarding who would be more responsible for
these systems—the data scientists and
programmers or the treating clinician?

In addition to security concerns when sharing
data between institutions and Al systems, ethical
considerations when using large-volume patient
data include data ownership and consent for an
individual's data to be captured in an ML system.
Since applied ML in the healthcare industry is still
in its infancy, it is expected that problems with
permission and data management may come up as
the field develops and will need ongoing
evaluation as Al advances.

Because insufficient data supports its usage, Al
CAD systems for aneurysm detection are not yet ready
to be incorporated into standard clinical practice.

If AI CAD tools assessed using internal test sets
are reevaluated in subsequent research with
anticipated external data, they will add further
evidence to the body of knowledge. Large and
representative datasets should be employed in
studies that build Al tools to assure clinical uptake;
clinical validation should then be accomplished
through prospective multicenter trials.

Conclusion

The findings of the investigation demonstrate
that DL methodologies exhibit promise in the
detection of IAs. However, to enhance the
robustness and reliability of these findings, future
research endeavors necessitate the utilization of
larger datasets.

Such  datasets  must encompass a
comprehensive representation of all types of
aneurysms, regardless of size and location, to
effectively capture the intricacies inherent in
aneurysm detection.

Additionally, to fully explain the impact of DL
techniques in this field, it is recommended that the
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design of some studies should be diversified. By
study methodologies,
researchers can better explain the breadth and

implementing

varied

this study.

depth of DL's efficacy in detecting IAs, thereby

advancing the field toward more comprehensive

and clinically relevant insights.
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