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Abstract 
Background: Syringic acid (SA) is a natural phenolic 
compound with antioxidant and anti-inflammatory 
properties. Due to limited studies on the analgesic 
effect of SA, we decided to comprehensively 
investigate this effect. Thus, the analgesic activity of 
SA was assessed for the first time using the formalin 
and writhing models, in addition to the hot plate (HP) 
test, involving its action on opioid, GABAergic, nitric 
oxide (NO)/cGMP, and ATP-sensitive K⁺ channel 
pathways. Furthermore, we examined exploratory and 
locomotor behaviors post SA administration. 
Methods: A total of 231 mice were randomly assigned 
to groups of 7. SA was administered at doses of 25, 50, 
and 100 mg/kg. To investigate the possible pathways, 
naloxone, flumazenil, L-NAME/methylene blue, and 
glibenclamide were administered before SA injection. 
Behavioral tests were performed using the open-field 

(OF) apparatus. Statistical analysis was performed 
using one-way (or two-way) analysis of variance 
(ANOVA) with Tukey, least significant difference 
(LSD), and Bonferroni post hoc tests. All the results 
were evaluated under blind conditions. 
Results: SA showed significant analgesic effects in the 
acute (P < 0.050) and chronic (P < 0.001) phases of 
formalin (P < 0.050) and writhing tests (P < 0.001) but 
not in the HP test. Furthermore, SA decreased 
exploratory behavior. Opioid receptor blockade 
reduced the number of writhes (P < 0.050). Moreover, 
using L-NAME increased the pain reaction time in the 
HP test (P < 0.010). 
Conclusion: SA exhibited analgesic effects in the 
formalin and writhing models, but not in the HP test. 
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Blocking opioid receptors in the writhing test reduced 
the analgesic effect of SA. Exploratory behavior 
increased when flumazenil, naloxone, and L-NAME were 
injected before SA administration. 

Introduction 

Pain is a distressing sensation commonly 
associated with various diseases. While acute pain 
is a natural sensory mechanism necessary to 
protect an individual from injury, persistent pain 
can significantly affect a person's life.1 
Inflammatory pain, a type of chronic pain, results 
from the release of inflammatory mediators from 
damaged tissue.2 Both acute and chronic pain are 
significant health concerns, and current treatment 
methods, which primarily involve the use of 
opioid analgesics and non-steroidal anti-
inflammatory drugs (NSAIDs), have restrictions 
related to the risk of abuse and safety.3,4 The roles 
of antioxidants in moderate inflammation and pain 
have been widely investigated.5 Polyphenols are 
beneficial antioxidants that have been extensively 
studied for their ability to prevent and treat several 
medical conditions. Phenolic acids are the most 
abundant secondary metabolites in plants and 
exhibit similar functional and structural features.6,7 
Multiple studies have examined the effects of 
phenolic compounds on inflammation and pain, 
and the role of natural products such as phenolic 
acids in preventing various diseases has been 
widely demonstrated.8-10 

Syringic acid (SA) is a phenolic compound 
found in many plant tissues, including fruits.11,12  
It has been studied for its potential biomedical 
effects, such as antioxidant, anti-inflammatory, 
neuroprotective,13,14 anti-cancer,15 
hepatoprotective,16 and antidepressant17 
properties in experimental studies. Research has 
also suggested that SA treatment may increase 
nitric oxide (NO) availability, decrease lipid 
peroxides, and lower antioxidant levels in rat 
blood samples.18 However, the analgesic effects of 
this antioxidant have not been comprehensively 
characterized. Only one study has investigated the 
effect of SA on pain in thermal models,19 and its 
effect on inflammatory and chronic pain and its 
mechanism of action remain unknown. Given the 
limited number of available studies on the 
analgesic effects of SA, this study aimed to 
investigate whether SA, as a potential antioxidant, 
has analgesic effects in models of acute and 
inflammatory pain. Therefore, we 
comprehensively evaluated the analgesic effects of 

SA at 3 different doses using standard pain-
induction models. In addition, we examined its 
effect on exploratory and locomotor behavior and 
investigated the role of opioids, GABAergic, 
NO/cGMP pathways, and ATP-sensitive K+ 
channels using pharmacological antagonists. 

Materials and Methods 

Animals: A total of 231 adult male mice weighing 
25-35 g were used in this experiment, with 7 mice 
placed in each group based on previous similar 
experimental studies. The mice were assigned to 
different treatment groups in a completely 
randomized manner. The mice were housed under 
controlled laboratory conditions (22  ±  2 °C, 55% 
humidity) with a 12:12 hour light-dark cycle and 
had ad libitum access to food and tap water. One 
week before the beginning of the experiment, the 
mice were brought to the experimental 
environment and allowed to acclimatize to the 
environment to minimize stress. Behavioral 
experiments and subsequent data analyses were 
performed by different experimenters who were 
unaware of group assignments to minimize 
potential bias. All procedures were approved by 
the Local Ethics Committee of Ahvaz Jundishapur 
University of Medical Sciences, Iran, (ethics code: 
IR.AJUMS.ABHC.REC.1398.045). Behavioral tests 
were conducted during the same period each day 
under identical environmental conditions, and all 
animals were tested under the same conditions. In 
the end, the mice were euthanized through deep 
anesthesia with ketamine and xylazine. 

Chemicals and drugs: Formalin and acetic acid 
were purchased from Merck (Darmstadt, 
Germany). SA, l-NAME, methylene blue, and 
glibenclamide were purchased from Sigma-
Aldrich (St. Louis, MO, USA). Ketamine and 
xylazine were obtained from Alfasan Chemical Co. 
(Woerden, Netherlands) and morphine and aspirin 
from Darou Pakhsh (Pars Darou, Iran). 

Experimental design: This study was conducted 
in two separate parts, including: 

Experiment 1: This experiment included 21 
mice divided into 3 subgroups to induce different 
pain models. 

1- The negative control group received an 
intraperitoneal (i.p) dose of normal saline. 

2- Positive control 1 received a dose of 
morphine (10 ml/kg, i.p.) as an opioid analgesic. 

3- The treatment group received a dose of SA 
(25 mg/kg, i.p.).  

4- The treatment group received a dose of SA 



 

 
 

 

(50 mg/kg, i.p.). 
5- The treatment group received a dose of SA 

(100 mg/kg, i.p.).  
The SA doses were selected in consultation with 

a pharmacologist and based on previous studies to 
cover an appropriate range for assessing dose-
dependent analgesic effects.13 

6- Positive control 2: received a dose of aspirin 
(300 mg/kg, intraperitoneally) as an anti-
inflammatory analgesic drug. 

All drugs were administered 30 minutes before 
the induction of the pain model. 

Experiment 2: Each group included 3 
subgroups for different tests. 

1- Negative control: received a normal saline 
dose as a vehicle.20 

2- The treatment group received a single dose 
of SA (the effective dose for each test selected in 
experiment 1). 

3- The treatment group received a dose of 
flumazenil (GABAA receptor inhibitor) 1 mg/kg, 
i.p. + SA.  

4- The treatment group received a dose of naloxone 
(opioid µ receptor inhibitor) 5 ml/kg, i.p. + SA. 

5- The treatment group received a dose of 
methylene blue (cGMP inhibitor) 10 mg/kg, i.p. + SA. 

6- The treatment group received a dose of L-
NAME (NO synthase inhibitor) 30 mg/kg, i.p. + SA. 

7- The treatment group received a dose of  
 

glibenclamide (ATP-sensitive K+ ion channel 
blocker) 10 mg/kg orally + SA. 

In experiment 2, the action mechanisms were 
investigated by pretreating the mice with 
flumazenil, naloxone, and L-NAME for 30 minutes 
and glibenclamide and methylene blue for 15 
minutes before the injection of SA (Figure 1). 

Formalin-induced pain: Briefly, 20 μl of 2.5% 
formalin solution was administered to the dorsal 
area of the left hind paw of the mice. The total 
duration of biting, licking, or elevation of the 
injected paw was recorded for each animal 
immediately following the injection. Formalin 
induces biphasic pain; the initial (neurogenic) 
stage occurs within the first 5 minutes immediately 
after injection, and the second (inflammatory) 
stage occurs 15–30 minutes later. The mice were 
pretreated with SA, morphine, aspirin, or saline 30 
minutes before formalin injection.21 

Acetic-acid-induced abdominal pain 

Writhing test: To induce abdominal pain, a 
0.6% (v/v) acetic acid solution was 
intraperitoneally administered to each mouse. The 
mice were placed in an apparatus, and the 
cumulative writhes (contractions of the body, 
trunk, and hind limb extension) were counted over 
30 minutes.22 The mice were treated with SA, 
morphine, aspirin, or vehicle 30 minutes before 
acetic acid injection. 

 

 
Figure 1. A schematic representation of the treatment grouping and timing in the study 



 
 

 

Hot plate (HP) latency test: We used a HP to 
assess acute thermal pain, according to previous 
studies.23 Each animal was placed on a 55 ± 0.5 °C 
metal surface, and the latency to the first explicit 
reaction, such as licking, shaking the hind paw, or 
jumping, was recorded. We considered a 
maximum cutoff time (= 30) to prevent tissue 
damage. This test was performed at baseline and  
5, 10, 15, 30, and 60 minutes after SA, vehicle, 
morphine, and aspirin administration. To evaluate 
the antinociceptive response in the HP test, the 
percentage of maximal possible effect (%MPE) was 
calculated, which is a standard approach 
commonly used in similar studies. 
 

MPE =
 (Post drug latency −  predrug latency) 

(Cutoff period −  predrug latency)
% 

 

Open-field (OF) test: Immediately after the HP 
test, each mouse was transferred to the OF 
apparatus. This test was performed as previously 
described.8 Each animal was placed in a box (40 cm 
× 40 cm) that was evenly divided into 9 squares. 
After habituation to the apparatus for 5 minutes, 
the number of line crossings with all 4 paws 
(ambulation or crossing) and the number of 
rearing were recorded within 5 minutes by a blind 
observer of the treatment. After each exposure, the 
box was cleaned with 75% ethanol. This procedure 
was repeated using naloxone (3 mg/kg, i.p.), 
flumazenil (1 mg/kg, i.p.), and L-NAME (30 
mg/kg, i.p.) for 30 minutes, and methylene blue 
(10 mg/kg, i.p.) and glibenclamide (10 mg/kg, i.p.) 
for 15 minutes prior to SA administration. 

Data were checked for normality using the 
Shapiro–Wilk test. Given the normal distribution 
of the data and homogeneity of variances, 

parametric tests, including one-way analysis of 
variance (ANOVA) followed by Tukey's post hoc 
test, were used to compare the groups. All 
statistical analyses were performed using 
GraphPad Prism (version 8.4.3; GraphPad 
Software Inc., San Diego, CA, USA) and IBM SPSS 
(version 26, IBM Corp., Armonk, NY, USA). One-
way ANOVA was conducted to compare group 
means, and post hoc tests, including Tukey’s test 
(Prism) and the least significant difference (LSD) 
test (SPSS), were used where appropriate. Two-
way ANOVA was used for the HP test, along with 
the Bonferroni post-hoc test. All data are expressed 
as mean ± SEM, and a significant difference was 
considered to be at P < 0.05. In addition to p-values, 
95% confidence intervals (CI) for the differences 
between the group means were calculated. Effect 
size (ES) was estimated using Cohen’s d to assess 
the magnitude of group differences. 

Results 

Antinociceptive response in the formalin test: The 
results of the acute phase of the formalin  
test (Figure 2A) showed that 100 mg/kg SA 
displayed a significant antinociceptive effect 
compared to the negative control group [P < 0.050 
LSD post hoc test, ES = 1.48, 95% confidence 
interval (CI): -16.16-133.3]. Although the 95%  
CI was –16.16-133.3, the ES was large, indicating a 
significant difference. As shown in figure 2B, SA 
resulted in a significant reduction in pain reaction 
time within the chronic phase of the test at doses of 
50 and 100 mg/kg compared to the negative 
control (P < 0.001, ES = 3.29, 95% CI: 42.71-152.1 
and ES = 3.40, 95% CI: 53.85-163.3).  

 

 
Figure 2. Effect of SA on formalin response in acute (A) and chronic (B) phases 
The results are presented as mean ± SEM [n = 7]. Statistical significance was calculated by ANOVA followed by 
Tukey’s or LSD post hoc tests 
*P < 0.05 and ***P < 0.001 compared with Control- group; ###P < 0.001 compared with Control + M group; 
Control-: Vehicle (normal saline) 
Control + M: Control + Morphine; SA: Syringic acid; ASP: Aspirin 

 



 

 
 

 

As expected, morphine had a significant 
analgesic effect in this test during both the acute  
(P < 0.010, ES = 2.91, 95% CI: 29.70 to 179.2)  
and chronic phases (P < 0.001, ES = 4.34, 95%  
CI: 74.05-183.5), while aspirin treatment was  
only effective during the chronic phase compared 
to the negative control (P < 0.001, ES = 3.46, 95%  
CI: 55.57-165). 

Antinociceptive response in the writhing test: 
The results of the writhing test, shown in figure 3, 
indicate that both 25 and 100 mg/kg doses of SA 
significantly reduced the writhing count compared 
to the negative control mice (P < 0.010, ES = 2.05, 
95% CI: 4.741-43.13; P < 0.050, ES = 1.52, 95%  
CI: 0.28-38.68, respectively). Moreover, morphine 
(P < 0.001, ES = 2.87, 95% CI: 14.50-52.89) and 
aspirin (P < 0.010, ES = 2.50, 95% CI: 9.57-47.96) 
caused a significant decrease in writhe count 
compared to the negative control.  
 

 
Figure 3. Effect of administration of SA on writhing 

behavior induced by intraperitoneal administration of 

0.1 ml/kg of acetic acid [0.6%] in mice [n = 7]  
Data are presented as mean ± SEM. Statistical significance 

was calculated by ANOVA followed by Tukey’s or LSD  

post hoc tests 
*P < 0.05, **P < 0.01, and ***P < 0.001 compared with Control- 

group; #P < 0.05 compared with Control + M group; Control-: 

Vehicle (normal saline) 

Control + M: Control + Morphine; SA: Syringic acid;  

ASP: Aspirin 

 
Antinociceptive response in the HP test: Figure 

4 shows the effect of SA on the HP test. SA did not 
extend the reaction time to pain at 5-60 minutes 
post-injection compared to the negative control 
group. Morphine, as a reference drug, significantly 
increased the latency time at 15 minutes (P < 0.050 
LSD pot hoc, ES = 0.71, 95% CI: -1.74-16.6),  
30 minutes (P < 0.010, ES = 1.77, 95% CI: 4.98-23.3), 

and 60 minutes (P < 0.010, ES = 1.90, 95%  
CI: 4.98-23.3) after SA injection. 
 

 
Figure 4. Effect of SA [25, 50, and 100 mg/kg] on the 

percentage of maximum possible effect (%MPE)/ 

latency time in the HP test  
The results are presented as mean ± SEM [n = 7] 
*P < 0.05, **P < 0.01 compared with control- group; Control-: 

Vehicle (normal saline) 

Control + M: Control + Morphine; SA: Syringic acid;  

ASP: Aspirin 

 
The effect of SA on motor activity in OF test: 

The effect of SA on the motor performance of the 
animals was evaluated 40 minutes post-
administration. Locomotion was evaluated by 
counting ambulation (crossing lines with 4 paws) 
and the number of rearing that indicated 
exploratory behavior (the mice stood on their hind 
legs, raised their forelimbs, and extended their 
heads). There was no significant change in the 
number of line crossings in the SA treatment group 
compared to the negative control group (Figure 
5A). SA 25 mg/kg had no significant effect, 
whereas 50 mg/kg (P < 0.050, ES = 2.02, 95%  
CI: 2.40-29.9) and 100 mg/kg doses of SA  
(P < 0.010, ES = 3.06, 95% CI: 6.40-29.9) significantly 
decreased rearing in mice compared with that in 
the negative control group (Figure 5B). 

The possible mechanisms of the analgesic effect 
of SA in the formalin test: Compared with the SA 
100 group, none of the studied pathways caused a 
difference in the time of pain response to formalin 
injection in either the initial or inflammatory phase 
of the formalin test (Figure 6A, B). 

The possible mechanisms of the analgesic effect 
of SA in writhing test: As shown in figure 7, 
inhibition of opioid receptors with naloxone 
significantly increased the number of writhes 
compared to the SA 25 group [P < 0.050, LSD post 
hoc test, ES = 1.14, 95% CI: -30.15- (-3.86)]. 
However, the other pathways did not have a 
significant effect on this test. 



 
 

 

 
Figure 5. Effect of syringic acid (SA) in the open-field (OF) test, number of line crossing [A] and 

number of rearing [B]  
The results are presented as mean ± SEM [n = 7]. Statistical significance was calculated by ANOVA followed 

by Tukey or LSD post hoc tests 
*P < 0.05, **P < 0.01, and ***P < 0.001 compared with Control- group; #P < 0.05 and ##P < 0.01 compared 

with Control + M; Control-: Vehicle (normal saline) 

Control + M: Control + Morphine; SA: Syringic acid; ASP: Aspirin 

 
The possible mechanisms of the analgesic effect of 

SA in HP test: Figure 8 shows the effects of 
intraperitoneal administration of the selected 
inhibitors on SA thermal pain latency time. In the 
SA100 + LNAME group, the pain latency time 
increased at 15 and 30 minutes after SA injection 
compared to that in the SA 100 group (ES = 1.95, 95% 
CI: 1.239-16.19 and ES = 2.83, 95% CI: 0.9529-15.90, 
respectively; P < 0.050). No significant differences 
were observed between the other groups. 

The possible mechanisms of SA in OF test: As 
shown in figure 9, the administration of flumazenil 
[ES = 1.24, 95% CI: -19.3-(-1.85)], naloxone  
[ES = 0.94, 95% CI: -20.3-(-2.85)], and L-NAME  
(ES = 0.92, 95% CI: -19.9-(2.42)] before SA injection 
significantly elevated the number of rearing 
behaviors in the animals compared to the SA  
100 treatment (P < 0.05). However, no significant 
differences were observed in the number of line 
crossings (Figure 9).  

 

 
Figure 6. Involvement of opioidergic, GABAergic, and NO/cGMP systems, and ATP-sensitive K+ channels 

in the formalin test in acute (A) and chronic (B) phases  
The results are presented as mean ± SEM [n = 7]. Statistical significance was calculated by ANOVA followed by Tukey 

or LSD post hoc tests 
*P < 0.5 and **P < 0.01 compared with Control- group; Control-: Vehicle (normal saline) 

SA: Syringic acid; Flu: Flumazenil; Nal: Naloxone; MB: Methylene Blue; GLBK: Glibenclamide 
 



 

 
 

 

 
Figure 7. Involvement of opioidergic, GABAergic, and 

NO/cGMP systems, and ATP-sensitive K+ channels in 

writhing abdominal test  
The results are presented as mean ± SEM [n = 7]. Statistical 

significance was calculated by ANOVA followed by Tukey’s 

or LSD post hoc tests 
***P < 0.05 compared with Control- group; Control-: Vehicle 

(normal saline) 

SA: Syringic acid; Flu: Flumazenil; Nal: Naloxone; MB: 

Methylene Blue; GLBK: Glibenclamide 

Discussion 

This study investigated the effects of SA 
pretreatment on 3 pain models. The findings 
showed that SA's antinociceptive effects were 
partly dose-dependent and varied across models. 
SA reduced nociceptive responses in formalin- and 
acetic acid-induced pain tests, which are models of 
neurogenic and inflammatory pain. In the chronic 
formalin phase, 50 and 100 mg/kg doses were  

effective, whereas 25 mg/kg was not. In the acute 
phase, only 100 mg/kg showed significant activity. 
 

 
Figure 8. Involvement of opioidergic, GABAergic, and 

NO/cGMP systems, and ATP-sensitive K+ channels in 

the percentage of maximum possible effect (%MPE)/ 

latency time in the HP test 
The results are presented as mean ± SEM [n = 7] 
**P < 0.01 compared with Control- group; Control-: Vehicle 

(normal saline) 

SA: Syringic acid; Flu: Flumazenil; Nal: Naloxone; MB: 

Methylene Blue; GLBK: Glibenclamide 

 
In the writhing test, 25 and 100 mg/kg doses 

were effective. However, no tested dose produced 
considerable analgesia in the HP test, suggesting 
limited efficacy in central thermal pain pathways. 
These results indicate that SA's antinociceptive 
action is more prominent in peripheral 
inflammatory models at higher doses. Additionally, 
SA reduced exploratory behavior during the OF 
test, but there were no changes in locomotion. 

 

 
Figure 9. Number of line crossing (A) and number of rearing (B) in the open-field (OF) test  
The results are presented as mean ± SEM [n = 7]. Statistical significance was calculated by ANOVA followed by Tukey 

or LSD post hoc tests 
**P < 0.01 compared with Control- group; ##P < 0.01 compared with SA 100 group; Control-: Vehicle (normal saline) 

SA: Syringic acid; Flu: Flumazenil; Nal: Naloxone; MB: Methylene Blue; GLBK: Glibenclamide 



 
 

 

The effects of SA were also evaluated in 
comparison to standard analgesics, such as aspirin 
and morphine. However, there are limitations to 
the use of these 2 drug groups. Long-term use of 
NSAIDs can result in peptic ulceration and 
cardiovascular effects, making it challenging.4 
Moreover, the use of opioids, such as morphine, is 
limited owing to the risk of dependence, which can 
lead to abuse and addiction.3 

Herbal medicines have recently gained 
popularity due to having fewer adverse effects 
than synthetic drugs. Polyphenols, including SA, 
often have antinociceptive and anti-inflammatory 
properties, primarily through the inhibition of 
lipoxygenase, cyclooxygenase, and NF-κB 
signaling pathways.24,25 This study examined the 
potential effects of SA, a natural polyphenol 
antioxidant, on pain modulation in mouse models. 

We used the formalin test to assess both acute 
and chronic pain,26 as it allows a distinction 
between the central and peripheral mechanisms of 
analgesia.27 In our study, 100 mg/kg SA 
significantly reduced nociceptive behaviors during 
the acute (neurogenic) phase, whereas both 50 and 
100 mg/kg doses attenuated the chronic 
(inflammatory) phase. The inhibition observed 
during the chronic phase was comparable to that 
observed with aspirin, indicating a peripheral  
anti-inflammatory effect. Consequently, a dose of 
100 mg/kg was determined to be optimal for 
subsequent experiments. 

The writhing test is a widely used model for 
examining visceral pain induced by chemical 
stimuli. In this method, intraperitoneal injection of 
acetic acid triggers the activation of peripheral 
nociceptors and promotes the release of 
inflammatory mediators.28 These mediators 
subsequently sensitize nociceptive neurons, 
making this model suitable for evaluating the 
effects of anti-inflammatory and analgesic agents, 
such as NSAIDs and opioids.29 In our study, SA 
significantly reduced the number of abdominal 
writhes following acetic acid administration, 
indicating an apparent antinociceptive effect in 
this inflammatory pain model.30 This supports the 
potential of SA to modulate peripheral pain 
pathways associated with chemical and 
inflammatory stimuli. 

 The HP test (thermal threshold test) was used 
to evaluate the central analgesic activity of SA. In 
this model, behavioral responses such as hind paw 
licking and jumping are commonly interpreted as 
indicators of spinal and supraspinal pain 

processing.31 Our findings showed that SA did  
not significantly alter reaction latency time 
compared to the control group, suggesting limited 
or no effect on thermal nociception. This finding is 
inconsistent with that of Okur and Şakul, who 
reported the analgesic effects of SA at 50 and  
100 mg/kg doses in the HP model.19 The observed 
discrepancy may be due to variations in 
experimental conditions, such as differences in 
mouse strains, treatment protocols, or timing of 
assessments between the two studies.19 

In the present study, SA demonstrated a 
significant analgesic effect during the acute phase 
of the formalin test; however, this effect was not 
observed in the HP test. This discrepancy can be 
attributed to the distinct mechanisms underlying 
these 2 pain models. While the formalin test mainly 
reflects the activity of peripheral nociceptors in 
response to chemical stimulation, the HP test is 
more reliant on the central processing pathways 
activated by thermal pain. These observations 
indicate that the antinociceptive effect of SA in our 
study was primarily mediated by peripheral 
mechanisms. Its limited efficacy in the HP model 
may suggest a reduced impact on central thermal 
nociception or necessitate alternative dosing 
strategies or timing to reveal such effects. 

The effects of SA were examined for the first 
time using formalin and writhing tests, revealing 
greater efficacy in mitigating chronic or 
inflammatory pain than neurogenic pain. This may 
be attributed to SA’s anti-inflammatory and 
antioxidant properties, which modulate various 
genes and signaling pathways involved in 
inflammatory responses.32 These effects likely 
occur through suppression of pro-inflammatory 
cytokines such as interleukin-13 (IL-13), IL-4, IL-5, 
and tumor necrosis factor (TNF-α).13 As 
inflammation is a pivotal factor in the onset and 
persistence of pain,33 the ability of SA to 
downregulate these mediators highlights its 
analgesic potential. Our findings align with those 
of previous studies that demonstrated the 
antinociceptive properties of polyphenolic 
compounds.9,25 

We investigated the possible impact of SA on 
motor activity in mice using OFT. Our findings 
showed a dose-dependent reduction in rearing 
behavior at higher doses of SA. Since SA did not 
significantly affect ambulation, this selective 
reduction suggests that SA may reduce 
exploratory behavior without inducing general 
sedation. Interestingly, Dalmagro et al. showed 



 

 
 

 

that injection of a lower dose of SA (1 mg/kg) for  
1 week had no impact on locomotion, suggesting 
dose- and duration-dependent effects.34 In our 
study, 25 mg/kg had no significant effect on 
movement compared to the control group. For 
comparison, morphine reduced rearing behavior 
similarly to SA but increased locomotor activity, 
which is consistent with the findings of Zhang and 
Kong, who reported that morphine enhanced 
movement in the OFT.35 

To better understand the potential mechanisms 
of the analgesic effects of SA, several 
pharmacological inhibitors targeting specific 
pathways were administered prior to SA 
treatment. Inhibition of GABAA receptors by 
flumazenil 30 minutes before SA injection did not 
interfere with the analgesic effects of SA, 
suggesting that GABAergic mechanisms may not 
be directly involved in SA-induced analgesia. 
Behavioral studies suggest that low concentrations 
of GABAA receptor agonists reduce formalin-
induced pain behaviors, whereas high 
concentrations increase pain.36 In addition, based 
on previous literature and findings, we know that 
these types of receptors are not the only regulators 
of pain. Many inhibitory and stimulatory 
neurotransmitters are involved, and simply 
blocking these receptors may not affect the pain. 

Naloxone, an opioid receptor antagonist, was 
injected 30 minutes before SA administration. In 
the writhing test, naloxone significantly increased 
the number of abdominal contractions compared 
to SA alone, suggesting that opioid receptors may 
mediate, at least partially, the antinociceptive 
effects of SA. Previous studies investigating the 
role of opioid pathways in plant extracts 
containing SA as the main phenolic acid and 
opioid receptor inhibitor did not report a reduction 
in the analgesic effect of SA.37 In the study by Okur 
and Şakul, the injection of naloxone reversed the 
antinociceptive effect of SA in the HP test, which is 
consistent with our results.19 

The NO/cGMP signaling pathway was 
examined in 2 separate groups by intraperitoneal 
administration of L-NAME and methylene blue  
30 and 15 minutes before the SA injection, 
respectively. L-NAME enhanced the analgesic 
effect of SA in the HP test at 15 and 30 minutes 
post-injection, which may suggest that inhibition 
of NO synthesis may potentiate SA’s action. Pain 
signal transmission in the spinal cord is known to 
involve NO/cGMP-dependent signaling 
pathways. NO plays a complex role in pain 

regulation. Evidence shows that inhibition of the 
NO/cGMP signaling pathway significantly 
reduces pain in animals and humans. Blocking  
NO or cGMP synthesis in the spinal cord alleviates 
nociception.38 However, some conflicting findings 
suggest that NO may possess pain-relieving 
properties in the spinal cord.39 Therefore, although 
our findings are consistent with a potential 
regulatory role of NO in nociception, further 
mechanistic studies are necessary to confirm this 
and its involvement in the antinociceptive 
pathway of SA. 

Finally, the involvement of ATP-sensitive 
potassium channels was examined using 
glibenclamide, an inhibitor of these channels. 
Research has demonstrated that compounds or 
pathways that stimulate these channels can 
alleviate both long- and short-term pain induced 
by formalin in rodent models.40 Administration of 
glibenclamide (10 mg/kg) did not significantly 
affect the antinociceptive response of SA, 
suggesting that this pathway may not be crucial for 
the mechanism of action of SA in the tested models. 

A wide variety of nociceptors and channels in 
the body are responsible for detecting noxious 
stimuli, including glutamate, N-methyl-D-
aspartate (NMDA), and toll-like receptors. In 
addition, channels include transient receptor 
potential (TRP) and voltage-gated calcium 
channels.41,42 Therefore, in addition to the 
mechanisms investigated in this study, other 
nociceptors are involved in the pain mechanism 
through which SA exerts analgesic effects. 

Limitations: First, molecular and biochemical 
analyses are needed to elucidate the exact 
pathways. Second, the study focused on short-
term behavioral assessments after single-dose SA 
administration. The long-term efficacy and safety 
of repeated administration were not evaluated. 
Third, the mechanisms of the antinociceptive 
effects of SA have only been partially explored 
using pharmacological inhibitors. Finally, 
experiments were conducted using male mice, not 
accounting for sex-based differences in pain 
perception and drug responses. Since hormones in 
women can affect pain threshold and drug efficacy, 
future studies should include both sexes to reflect 
clinical variation. 

Conclusion 

In conclusion, SA pre-treatment exhibited notable 
antinociceptive effects in models of inflammatory 
and visceral pain, particularly during the chronic 



 
 

 

phase of the formalin and acetic acid-induced 
writhing tests. These findings suggest that SA may 
be more effective in alleviating inflammatory pain, 
likely through peripheral mechanisms of action. 
No significant effect was observed in the HP test, 
indicating less effectiveness for centrally mediated 
thermal pain relief. Further investigation is 
necessary in this area, particularly regarding the 
impact of SA on chronic pain. The findings of this 
study indicate the potential of SA as a natural 
compound with analgesic effects in inflammatory 
pain. However, further studies on the effective 
dose, long-term safety, and molecular 
mechanisms, particularly in chronic pain models, 
are necessary to assess the transferability of these 

results to humans. 
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