Document Type : Original Article

Authors

1 Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

2 Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran Department of Neurology, Shiraz University of Medical Sciences, Shiraz, Iran

3 Laboratory of Basic Sciences, Mohammad Rasul Allah Research Tower, Shiraz University of Medical Sciences, Shiraz, Iran

4 Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fasa, Iran

5 Department of Neurology, John Hunter Hospital, Newcastle, Newcastle, Australia

6 Hunter Medical Research Institute, University of Newcastle, Newcastle, Australia

Abstract

Background: Inflammation is the major contributor to the pathophysiology of ischemic stroke (IS). Long non-coding ribonucleic acids (lncRNAs) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) and tumor necrosis factor and heterogeneous nuclear ribonucleoprotein L-related immunoregulatory (THRIL) have been demonstrated to be up-regulated in inflammation and atherosclerosis. Therefore, we aimed to study the expression profile of these lncRNAs after IS.
Methods: This observational case-control study was conducted in Namazi Hospital, Shiraz, Iran. The real-time polymerase chain reaction (RT-PCR) measured the sequential changes in circulating levels of MALAT1 and THRIL on days 1, 3, and 5 after IS. The receiver operating characteristic (ROC) curve analysis was used to estimate the diagnostic and prognostic potential of lncRNAs with the area under the curve (AUC).
Results: In patients with IS, the relative MALAT1 and THRIL expressions were significantly higher than the controls (P < 0.001 and P < 0.01, respectively), on days 1, 3, and 5 after stroke. 
We showed a significantly increase in lncRNAs expression on day five compared to days 1 and 3 after stroke. Moreover, a positive correlation was detected between MALAT1 expression and time within the first 24 hours after stroke (r = 0.27, P = 0.03). Logistic regression analysis showed a significant positive association between MALAT1 and THRIL and the risk of stroke evolution. We found a potential diagnostic marker for MALAT1 with an AUC of 0.78.
Conclusion: We demonstrated the significant sequential upregulation in MALAT1 and THRIL expression on days 1, 3, and 5 after IS with a significant positive association with the risk of stroke. MALAT1 also significantly correlated with time within the first 24 hours after stroke.

Keywords

  1. Tabrizi R, Lankarani KB, Kardeh B, Akbari H, Azarpazhooh MR, Borhani-Haghighi A. A Comprehensive systematic review and meta-analysis on the risk factors of stroke in iranian population. Arch Iran Med 2021; 24(1): 64-77.
  2. Jickling GC, Sharp FR. Blood biomarkers of ischemic stroke. Neurotherapeutics 2011; 8(3): 349-60.
  3. Statello L, Guo CJ, Chen LL, Huarte M. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol 2021; 22(2): 96-118.
  4. Bao MH, Szeto V, Yang BB, Zhu SZ, Sun HS, Feng ZP. Long non-coding RNAs in ischemic stroke. Cell Death Dis 2018; 9(3): 281.
  5. Zhu M, Li N, Luo P, Jing W, Wen X, Liang C, et al. Peripheral blood leukocyte expression of lncRNA MIAT and its diagnostic and prognostic value in ischemic stroke. J Stroke Cerebrovasc Dis 2018; 27(2): 326-37.
  6. Rezaei M, Mokhtari MJ, Bayat M, Safari A, Dianatpuor M, Tabrizi R, et al. Long non-coding RNA H19 expression and functional polymorphism rs217727 are linked to increased ischemic stroke risk. BMC Neurol 2021; 21(1): 54.
  7. Zhu W, Tian L, Yue X, Liu J, Fu Y, Yan Y. LncRNA expression profiling of ischemic stroke during the transition from the acute to subacute stage. Front Neurol 2019; 10: 36.
  8. Gao H, Wang X, Lin C, An Z, Yu J, Cao H, et al. Exosomal MALAT1 derived from ox-LDL-treated endothelial cells induce neutrophil extracellular traps to aggravate atherosclerosis. Biol Chem 2020; 401(3): 367-76.
  9. Cai Q, Gao ML, Huang LS, Chen HS, Pan LH. MALAT1/miRNA-203/Wnt5a: A potential mechanism for regulating coronary artery disease. Int J Cardiol 2021; 329: 48.
  10. Liu JY, Yao J, Li XM, Song YC, Wang XQ, Li YJ, et al. Pathogenic role of lncRNA-MALAT1 in endothelial cell dysfunction in diabetes mellitus. Cell Death Dis 2014; 5(10): e1506.
  11. Xiao J, Lu Y, Yang X. THRIL mediates endothelial progenitor cells autophagy via AKT pathway and FUS. Mol Med 2020; 26(1): 86.
  12. Han Y, Qiu H, Pei X, Fan Y, Tian H, Geng J. Low-dose sinapic acid abates the pyroptosis of macrophages by downregulation of lncrna-malat1 in rats with diabetic atherosclerosis. J Cardiovasc Pharmacol 2018; 71(2): 104-12.
  13. Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, et al. Guidelines for the early management of patients with acute ischemic stroke: 2019 update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals From the American Heart Association/American Stroke Association. Stroke 2019; 50(12): e344-e418.
  14. Li H, Zhu X, Hu L, Li Q, Ma J, Yan J. Loss of exosomal MALAT1 from ox-LDL-treated vascular endothelial cells induces maturation of dendritic cells in atherosclerosis development. Cell Cycle 2019; 18(18): 2255-67.
  15. Lv F, Liu L, Feng Q, Yang X. Long non-coding RNA MALAT1 and its target microRNA-125b associate with disease risk, severity, and major adverse cardiovascular event of coronary heart disease. J Clin Lab Anal 2021; 35(4): e23593.
  16. Toraih EA, El-Wazir A, Alghamdi SA, Alhazmi AS, El-Wazir M, Abdel-Daim MM, et al. Association of long non-coding RNA MIAT and MALAT1 expression profiles in peripheral blood of coronary artery disease patients with previous cardiac events. Genet Mol Biol 2019; 42(3): 509-18.
  17. Qiu S, Sun J. lncRNA-MALAT1 expression in patients with coronary atherosclerosis and its predictive value for in-stent restenosis. Exp Ther Med 2020; 20(6): 129.
  18. Qi H, Shen J, Zhou W. Up-regulation of long non-coding RNA THRIL in coronary heart disease: Prediction for disease risk, correlation with inflammation, coronary artery stenosis, and major adverse cardiovascular events. J Clin Lab Anal 2020; 34(5): e23196.
  19. Huangfu N, Xu Z, Zheng W, Wang Y, Cheng J, Chen X. LncRNA MALAT1 regulates oxLDL-induced CD36 expression via activating beta-catenin. Biochem Biophys Res Commun 2018; 495(3): 2111-7.
  20. Ren H, Wu F, Liu B, Song Z, Qu D. Association of circulating long non-coding RNA MALAT1 in diagnosis, disease surveillance, and prognosis of acute ischemic stroke. Braz J Med Biol Res 2020; 53(12): e9174.
  21. Fathy N, Kortam MA, Shaker OG, Sayed NH. Long noncoding RNAs MALAT1 and ANRIL gene variants and the risk of cerebral ischemic stroke: An association study. ACS Chem Neurosci 2021; 12(8): 1351-62.
  22. Adams HP, Jr., Bendixen BH, Kappelle LJ, Biller J, Love BB, Gordon DL, et al. Classification of subtype of acute ischemic stroke. Definitions for use in a multicenter clinical trial. TOAST. Trial of Org 10172 in Acute Stroke Treatment. Stroke 1993; 24(1): 35-41.
  23. Unger T, Borghi C, Charchar F, Khan NA, Poulter NR, Prabhakaran D, et al. 2020 International Society of Hypertension Global Hypertension Practice Guidelines. Hypertension 2020; 75(6): 1334-57.
  24. American Diabetes Association. Diagnosis and classification of diabetes mellitus. Diabetes Care 2004; 27(Suppl 1): S5-S10.
  25. Williams LS, Yilmaz EY, Lopez-Yunez AM. Retrospective assessment of initial stroke severity with the NIH Stroke Scale. Stroke 2000; 31(4): 858-62.
  26. Nunn A, Bath PM, Gray LJ. Analysis of the modified rankin scale in randomised controlled trials of acute ischaemic stroke: A systematic review. Stroke Res Treat 2016; 2016: 9482876.
  27. Schmittgen TD, Livak KJ. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc 2008; 3(6): 1101-8.
  28. Liu C, Zhang C, Yang J, Geng X, Du H, Ji X, et al. Screening circular RNA expression patterns following focal cerebral ischemia in mice. Oncotarget 2017; 8(49): 86535-47.
  29. Xin JW, Jiang YG. Long noncoding RNA MALAT1 inhibits apoptosis induced by oxygen-glucose deprivation and reoxygenation in human brain microvascular endothelial cells. Exp Ther Med 2017; 13(4): 1225-34.
  30. Masoumi F, Ghorbani S, Talebi F, Branton WG, Rajaei S, Power C, et al. Malat1 long noncoding RNA regulates inflammation and leukocyte differentiation in experimental autoimmune encephalomyelitis. J Neuroimmunol 2019; 328: 50-9.
  31. Wang J, Zhao H, Fan Z, Li G, Ma Q, Tao Z, et al. Long noncoding RNA H19 promotes neuroinflammation in ischemic stroke by driving histone deacetylase 1-dependent M1 microglial polarization. Stroke 2017; 48(8): 2211-21.
  32. Xiao Z, Qiu Y, Lin Y, Medina R, Zhuang S, Rosenblum JS, et al. Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging (Albany NY) 2019; 11(11): 3585-600.
  33. Kuai F, Zhou L, Zhou J, Sun X, Dong W. Long non-coding RNA THRIL inhibits miRNA-24-3p to upregulate neuropilin-1 to aggravate cerebral ischemia-reperfusion injury through regulating the nuclear factor kappaB p65 signaling. Aging (Albany NY) 2021; 13(6): 9071-84.
  34. Xia J, Jiang N, Li Y, Wei Y, Zhang X. The long noncoding RNA THRIL knockdown protects hypoxia-induced injuries of H9C2 cells through regulating miR-99a. Cardiol J 2019; 26(5): 564-74.
  35. Sheng C, Hu F, Wu L. Retraction notice to "Geniposide alleviates hypoxia-induced injury by down-regulation of lncRNA THRIL in rat cardiomyocytes derived H9c2 cells" [Eur. J. Pharmacol. 854 (2019) 28-38]. Eur J Pharmacol 2022; 929: 175125.
  36. Lin L, Bao J. Long non-coding RNA THRIL is upregulated in coronary heart disease and binds to microRNA-424 to upregulate TXNIP in mice. Microvasc Res 2021; 138: 104215.