Document Type : Original Article

Authors

1 Student Research Committee, Shiraz University of Medical Sciences, Shiraz, Iran Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran MD-MPH Dual Degree Program, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

2 Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

3 Hematology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran

4 Health Policy Research Center, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran

5 MD-MPH Dual Degree Program, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran Research Center for Traditional Medicine and History of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran

6 Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran Shiraz Molecular Pathology Research Center, Daneshbod Pathology Lab, Shiraz Iran

Abstract

Abstract
Background: Several laboratory markers derived from a complete blood count (CBC) have been proposed as potential indicators for assessing the risk of cerebral venous thrombosis (CVT). However, limited and conflicting evidence exists regarding this association. This study aimed to evaluate the role of CBC parameters in CVT development and their link to disease characteristics.
Methods: This case-control study included patients diagnosed with CVT between March 2018 and March 2021. All participants with CVT were registered in the organized registry system at the Neurology Research Center of Shiraz University of Medical Sciences, Shiraz, Iran (CVT registry code: 9001013381). 
The control group consisted of age- and sex-matched individuals without systemic diseases. CBC results from the control group and the first recorded hospital CBC of the patient group were collected.
Results: The study included 295 patients with CVT [49 with idiopathic CVT (iCVT) and 246 with secondary CVT (sCVT)] and 341 healthy individuals. Among the CVT group, 72.54% were women. Patients with CVT had higher red cell distribution width (RDW) and lower red blood cell (RBC) count, hemoglobin (Hb) levels, and hematocrit compared to the non-CVT group. In iCVT cases, male gender, RBC count, Hb levels, and hematocrit were notably higher compared to sCVT cases. Logistic regression analysis showed that female gender, smoking, and higher hematocrit values were associated with increased probability of iCVT.
Conclusion: The study suggests that certain CBC parameters may serve as potential markers for assessing CVT risk and differentiating between iCVT and sCVT cases. Validation and further research are needed to explore the underlying mechanisms.

Keywords

  1. Silvis SM, de Sousa DA, Ferro JM, Coutinho JM. Cerebral venous thrombosis. Nat Rev Neurol 2017; 13(9): 555-65.
  2. Khatri IA, AlKawi A, Ilyas A, Ilyas MS. Unusual causes of cerebral venous thrombosis. J Pak Med Assoc 2006; 56(11): 501-6.
  3. Canedo-Antelo M, Baleato-Gonzalez S, Mosqueira AJ, Casas-Martinez J, Oleaga L, Vilanova JC, et al. Radiologic clues to cerebral venous thrombosis. Radiographics 2019; 39(6): 1611-28.
  4. Litvinov RI, Weisel JW. Role of red blood cells in haemostasis and thrombosis. ISBT Sci Ser 2017; 12(1): 176-83.
  5. Weisel JW, Litvinov RI. Red blood cells: the forgotten player in hemostasis and thrombosis. J Thromb Haemost 2019; 17(2): 271-82.
  6. He J, Jiang Q, Yao Y, Shen Y, Li J, Yang J, et al. Blood Cells and Venous Thromboembolism Risk: A Two-Sample Mendelian Randomization Study. Front Cardiovasc Med 2022; 9: 919640.
  7. Bucciarelli P, Maino A, Felicetta I, Abbattista M, Passamonti SM, Artoni A, et al. Association between red cell distribution width and risk of venous thromboembolism. Thromb Res 2015; 136(3): 590-4.
  8. Cohen J, Edelman RR, Chopra S. Portal vein thrombosis: A review. Am J Med 1992; 92(2): 173-82.
  9. Li D, Shi C, Ding Z, Li X. Budd-Chiari syndrome as a complication of eosinophilic granulomatosis with polyangiitis in a young Chinese man: A case report. J Int Med Res 2020; 48(10): 300060520964352.
  10. Alt E, Banyai S, Banyai M, Koppensteiner R. Blood rheology in deep venous thrombosis--relation to persistent and transient risk factors. Thromb Res 2002; 107(3-4): 101-7.
  11. Yu FT, Armstrong JK, Tripette J, Meiselman HJ, Cloutier G. A local increase in red blood cell aggregation can trigger deep vein thrombosis: Evidence based on quantitative cellular ultrasound imaging. J Thromb Haemost 2011; 9(3): 481-8.
  12. Marchioli R, Finazzi G, Specchia G, Cacciola R, Cavazzina R, Cilloni D, et al. Cardiovascular events and intensity of treatment in polycythemia vera. N Engl J Med 2013; 368(1): 22-33.
  13. Byrnes JR, Wolberg AS. Red blood cells in thrombosis. Blood 2017; 130(16): 1795-9.
  14. Ananthaseshan S, Bojakowski K, Sacharczuk M, Poznanski P, Skiba DS, Prahl WL, et al. Red blood cell distribution width is associated with increased interactions of blood cells with vascular wall. Sci Rep 2022; 12(1): 13676.
  15. Canakci ME, Acar N, Kuas C, Ozakin E, Tiryaki BB, Karakilic E, et al. Diagnostic value of hounsfield unit and hematocrit levels in cerebral vein thrombosis in the emergency department. J Emerg Med 2021; 61(3): 234-40.
  16. Warny M, Helby J, Birgens HS, Bojesen SE, Nordestgaard BG. Arterial and venous thrombosis by high platelet count and high hematocrit: 108 521 individuals from the Copenhagen General Population Study. J Thromb Haemost 2019; 17(11): 1898-911.
  17. Braekkan SK, Mathiesen EB, Njolstad I, Wilsgaard T, Hansen JB. Hematocrit and risk of venous thromboembolism in a general population. The Tromso study. Haematologica 2010; 95(2): 270-5.
  18. Ellingsen TS, Lappegard J, Skjelbakken T, Braekkan SK, Hansen JB. Red cell distribution width is associated with incident venous thromboembolism (VTE) and case-fatality after VTE in a general population. Thromb Haemost 2015; 113(1): 193-200.
  19. Patel KV, Mohanty JG, Kanapuru B, Hesdorffer C, Ershler WB, Rifkind JM. Association of the red cell distribution width with red blood cell deformability. Adv Exp Med Biol 2013; 765: 211-6.
  20. Furie B, Furie BC. Thrombus formation in vivo. J Clin Invest 2005; 115(12): 3355-62.
  21. Rumbaut RE, Thiagarajan P. Platelet-vessel wall interactions in hemostasis and thrombosis. San Rafael, CA: Morgan and Claypool Life Sciences; 2010.
  22. Thompson CB, Eaton KA, Princiotta SM, Rushin CA, Valeri CR. Size dependent platelet subpopulations: relationship of platelet volume to ultrastructure, enzymatic activity, and function. Br J Haematol 1982; 50(3): 509-19.
  23. Bolayir A, Gökçe ŞF. The role of mean platelet volume, platelet distribution width and platelet / lymphocyte ratio in development of cerebral venous thrombosis. Cumhuriyet Medical Journal 2017; 39: 683-91.
  24. Kamisli O, Kamisli S, Kablan Y, Gonullu S, Ozcan C. The prognostic value of an increased mean platelet volume and platelet distribution width in the early phase of cerebral venous sinus thrombosis. Clin Appl Thromb Hemost 2013; 19(1): 29-32.
  25. Biino G, Portas L, Murgia F, Vaccargiu S, Parracciani D, Pirastu M, et al. A population-based study of an Italian genetic isolate reveals that mean platelet volume is not a risk factor for thrombosis. Thromb Res 2012; 129(4): e8-13.
  26. Riedl J, Kaider A, Reitter EM, Marosi C, Jager U, Schwarzinger I, et al. Association of mean platelet volume with risk of venous thromboembolism and mortality in patients with cancer. Results from the Vienna Cancer and Thrombosis Study (CATS). Thromb Haemost 2014; 111(4): 670-8.
  27. Madineni KU, Prasad SVN, Bhuma V. A study of the prognostic significance of platelet distribution width, mean platelet volume, and plateletcrit in cerebral venous sinus thrombosis. J Neurosci Rural Pract 2023; 14(3): 418-23.
  28. Izzi B, Gialluisi A, Gianfagna F, Orlandi S, De Curtis A, Magnacca S, et al. Platelet distribution width is associated with P-selectin dependent platelet function: Results from the Moli-Family Cohort Study. Cells 2021; 10(10): 2737.
  29. Shi Y, Jiang H, Huang C, Hu C, Zhao J, Li M, et al. Platelet distribution width is highly associated with thrombotic events in primary antiphospholipid syndrome. Clin Rheumatol 2021; 40(11): 4581-8.
  30. Gasparyan AY, Ayvazyan L, Mikhailidis DP, Kitas GD. Mean platelet volume: a link between thrombosis and inflammation? Curr Pharm Des 2011; 17(1): 47-58.
  31. Mayda-Domac F, Misirli H, Yilmaz M. Prognostic role of mean platelet volume and platelet count in ischemic and hemorrhagic stroke. J Stroke Cerebrovasc Dis 2010; 19(1): 66-72.
  32. Cil H, Yavuz C, Islamoglu Y, Tekbas EO, Demirtas S, Atilgan ZA, et al. Platelet count and mean platelet volume in patients with in-hospital deep venous thrombosis. Clin Appl Thromb Hemost 2012; 18(6): 650-3.
  33. Zhang X, Ding R, Li H, Liu Y, Ou W, Hu J, et al. An Association between Inflammation and Cerebral Venous Thrombosis: A Retrospective Study. J Stroke Cerebrovasc Dis 2021; 30(11): 106084.
  34. Zhao J, Liu K, Li S, Gao Y, Zhao L, Liu H, et al. Neutrophil-to-lymphocyte Ratio Predicts the Outcome of Cerebral Venous Thrombosis. Curr Neurovasc Res 2021; 18(2): 204-10.
  35. Beye A, Pindur G. Clinical significance of factor V Leiden and prothrombin G20210A-mutations in cerebral venous thrombosis - comparison with arterial ischemic stroke. Clin Hemorheol Microcirc 2017; 67(3-4): 261-6.
  36. Zuber M, Toulon P, Marnet L, Mas JL. Factor V Leiden mutation in cerebral venous thrombosis. Stroke 1996; 27(10): 1721-3.
  37. Sinani AA, Hashmi AMA, Aaron S, Lukas J, Zaabi MA. Quantitative antithrombin deficiency manifesting as cerebral sinus thrombosis in a patient with a family history of clinically variable venous thromboembolic events: A case report. J Stroke Med 2021; 4(1): 67-71.
  38. Reiter M, Bucek RA, Koca N, Dirisamer A, Minar E. Deep vein thrombosis and systemic inflammatory response: A pilot trial. Wien Klin Wochenschr 2003; 115(3-4): 111-4.
  39. Artoni A, Abbattista M, Bucciarelli P, Gianniello F, Scalambrino E, Pappalardo E, et al. Platelet to lymphocyte ratio and neutrophil to lymphocyte ratio as risk factors for venous thrombosis. Clin Appl Thromb Hemost 2018; 24(5): 808-14.
  40. Selvaggio S, Brugaletta G, Abate A, Musso C, Romano M, Di Raimondo D, et al. Platelet‑to‑lymphocyte ratio, neutrophil‑to‑lymphocyte ratio and monocyte‑to‑HDL cholesterol ratio as helpful biomarkers for patients hospitalized for deep vein thrombosis. Int J Mol Med 2023; 51(6): 52.
  41. Akboga YE, Bektas H, Anlar O. Usefulness of platelet to lymphocyte and neutrophil to lymphocyte ratios in predicting the presence of cerebral venous sinus thrombosis and in-hospital major adverse cerebral events. J Neurol Sci 2017; 380: 226-9.
  42. Tekesin A, Tunc A. Inflammatory markers are beneficial in the early stages of cerebral venous thrombosis. Arq Neuropsiquiatr 2019; 77(2): 101-5.
  43. Xue J, Huang W, Chen X, Li Q, Cai Z, Yu T, et al. Neutrophil-to-Lymphocyte Ratio Is a Prognostic Marker in Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26(3): 650-7.
  44. Eischer L, Tscholl V, Heinze G, Traby L, Kyrle PA, Eichinger S. Hematocrit and the risk of recurrent venous thrombosis: a prospective cohort study. PLoS One 2012; 7(6): e38705.
  45. Saadatnia M, Fatehi F, Basiri K, Mousavi SA, Mehr GK. Cerebral venous sinus thrombosis risk factors. Int J Stroke 2009; 4(2): 111-23.
  46. Dicato M. Venous thromboembolic events and erythropoiesis-stimulating agents: an update. Oncologist 2008; 13(Suppl 3): 11-5.
  47. Pearson TC, Wetherley-Mein G. Vascular occlusive episodes and venous haematocrit in primary proliferative polycythaemia. Lancet 1978; 2(8102): 1219-22.
  48. Rezende SM, Lijfering WM, Rosendaal FR, Cannegieter SC. Hematologic variables and venous thrombosis: red cell distribution width and blood monocyte count are associated with an increased risk. Haematologica 2014; 99(1): 194-200.
  49. Maino A, Abbattista M, Bucciarelli P, Artoni A, Passamonti SM, Lanfranconi S, et al. Red cell distribution width and the risk of cerebral vein thrombosis: A case-control study. Eur J Intern Med 2017; 38: 46-51.
  50. Aamodt AH, Skattor TH. Cerebral venous thrombosis. Semin Thromb Hemost 2022; 48(3): 309-17.
  51. Luo Y, Tian X, Wang X. Diagnosis and treatment of cerebral venous thrombosis: A review. Front Aging Neurosci 2018; 10: 2.
  52. Karadas S, Milanlioglu A, Gonullu H, Sayin R, Aydin MN. Cerebral venous sinus thrombosis presentation in emergency department in Van, Turkey. J Pak Med Assoc 2014; 64(4): 370-4.
  53. Gunes HN, Cokal BG, Guler SK, Yoldas TK, Malkan UY, Demircan CS, et al. Clinical associations, biological risk factors and outcomes of cerebral venous sinus thrombosis. J Int Med Res 2016; 44(6): 1454-61.
  54. Stam J. Thrombosis of the cerebral veins and sinuses. N Engl J Med 2005; 352(17): 1791-8.
  55. Coutinho JM, Ferro JM, Canhao P, Barinagarrementeria F, Cantu C, Bousser MG, et al. Cerebral venous and sinus thrombosis in women. Stroke 2009; 40(7): 2356-61.
  56. Koks G, Fischer K, Koks S. Smoking-related general and cause-specific mortality in Estonia. BMC Public Health 2017; 18(1): 34.
  57. Raval M, Paul A. Cerebral Venous Thrombosis and venous infarction: Case report of a rare initial presentation of smoker's polycythemia. Case Rep Neurol 2010; 2(3): 150-6.
  58. Green M, Styles T, Russell T, Sada C, Jallow E, Stewart J, et al. Non-genetic and genetic risk factors for adult cerebral venous thrombosis. Thromb Res 2018; 169: 15-22.
  59. Tufano A, Guida A, Coppola A, Nardo A, Di Capua M, Quintavalle G, et al. Risk factors and recurrent thrombotic episodes in patients with cerebral venous thrombosis. Blood Transfus 2014; 12(Suppl 1): s337-s342.
  60. Ciccone A, Gatti A, Melis M, Cossu G, Boncoraglio G, Carriero MR, et al. Cigarette smoking and risk of cerebral sinus thrombosis in oral contraceptive users: A case-control study. Neurol Sci 2005; 26(5): 319-23.