Document Type : Original Article

Authors

1 Department of Radiology, Ali Ibn Abitaleb Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

2 Neuro-Immunology Research Scholar, Neurological Research Laboratory, Jefferson Hospital for Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA

3 Social Determinants of Health Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

4 Department of Radiology Sciences, School of Allied Medical Sciences, Kerman University of Medical Sciences, Kerman, Iran

5 Non-Communicable Diseases Research Center, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

6 Department of Pathology, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

7 Department of Anaesthesiology, School of Medicine, Ali Ibn Abitaleb Educational and Treatment Hospital, Rafsanjan University of Medical Sciences, Rafsanjan, Iran

Abstract

Background: This study examines the relationship between quantitative magnetic resonance imaging (MRI) markers and clinical/cognitive performance in patients with multiple sclerosis (MS), exploring the impact of MRI markers on disability, clinical status, and cognitive function.
Methods: This cross-sectional study recruited patients with MS from the MS registry center of Rafsanjan University of Medical Sciences, Rafsanjan, Iran. Informed consent was obtained from all participants (8 men, 57 women). 
Patients with MS underwent neuropsychological and clinical assessments using a word-pair learning task, the Wisconsin Card Sorting test (WCST), Tower of London test (TOL), Paced Auditory Serial Addition Test (PASAT), Multiple Sclerosis Functional Composite (MSFC), and the Expanded Disability Status Scale (EDSS). MRI markers were assessed by the neurologist and radiologist. Statistical significance was set at P < 0.05.
Results: Patients with plaques in the basal ganglia and thalamus had significantly different MSFC (P = 0.038) and PASAT (P = 0.010) scores, while higher EDSS scores correlated with T2-weighted-fluid-attenuated inversion recovery (T2-FLAIR) hyper-intense plaques (P = 0.025). T1 black hole plaques were associated with increased depression (P = 0.015). WCST scores were significantly higher in patients with infratentorial plaques (P = 0.006) and those with T1 black hole lesions (P < 0.05). Total plaque volume positively correlated with EDSS score (r = 0.386, P = 0.002) and word-pair learning (r = 0.254, P = 0.045), and negatively correlated with PASAT scores (r = -0.299, P = 0.017). Enhanced plaques correlated positively with TOL performance (r = 0.319, P = 0.010).
Conclusion: Memory decline and increased disability in patients with MS are associated with brain volume loss, increased plaque volume, and plaque location in the infratentorial region, basal ganglia, and thalamus. Enhanced plaques or T1 black hole lesions also contribute to cognitive impairment.

Keywords

Main Subjects

  1. Siva A. The spectrum of multiple sclerosis and treatment decisions. Clin Neurol Neurosurg 2006; 108(3): 333-8.
  2. Ferguson B, Matyszak MK, Esiri MM, Perry VH. Axonal damage in acute multiple sclerosis lesions. Brain 1997; 120 (Pt 3): 393-9.
  3. Cavallari M, Ceccarelli A, Wang G-Y, Moscufo N, Hannoun S, Matulis CR, et al. Microstructural changes in the striatum and their impact on motor and neuropsychological performance in patients with multiple sclerosis. PloS one 2014; 9(7): e101199.
  4. Schmitt MM, Goverover Y, DeLuca J, Chiaravalloti N. Self-efficacy as a predictor of self-reported physical, cognitive, and social functioning in multiple sclerosis. Rehabil Psychol 2014; 59(1): 27-34.
  5. Kurtzke JF. Rating neurologic impairment in multiple sclerosis: an expanded disability status scale (EDSS). Neurology 1983; 33(11): 1444-52.
  6. Rudick RA, Cutter G, Reingold S. The multiple sclerosis functional composite: Anew clinical outcome measure for multiple sderosis trials. Mult Scler 2002; 8(5): 359-65.
  7. Meijer KA, Eijlers AJC, Douw L, Uitdehaag BMJ, Barkhof F, Geurts JJG, et al. Increased connectivity of hub networks and cognitive impairment in multiple sclerosis. Neurology 2017; 88(22): 2107-14.
  8. Petracca M, Saiote C, Bender HA, Arias F, Farrell C, Magioncalda P, et al. Synchronization and variability imbalance underlie cognitive impairment in primary-progressive multiple sclerosis. Sci Rep 2017; 7(1): 46411.
  9. Gerstenecker A, Myers T, Lowry K, Martin RC, Triebel KL, Bashir K, et al. Financial Capacity and its Cognitive Predictors in Progressive Multiple Sclerosis. Arch Clin Neuropsychol 2017; 32(8): 943-50.
  10. Di Filippo M, Portaccio E, Mancini A, Calabresi P. Multiple sclerosis and cognition: synaptic failure and network dysfunction. Nat Rev Neurosci 2018; 19(10): 599-609.
  11. Dineen RA, Vilisaar J, Hlinka J, Bradshaw CM, Morgan PS, Constantinescu CS, et al. Disconnection as a mechanism for cognitive dysfunction in multiple sclerosis. Brain 2009; 132(Pt 1): 239-49.
  12. Koenig KA, Sakaie KE, Lowe MJ, Lin J, Stone L, Bermel RA, et al. The relationship between cognitive function and high-resolution diffusion tensor MRI of the cingulum bundle in multiple sclerosis. Mult Scler 2015; 21(14): 1794-801.
  13. Jongen PJ, Ter Horst AT, Brands AM. Cognitive impairment in multiple sclerosis. Minerva Med 2012; 103(2): 73-96.
  14. Covey TJ, Zivadinov R, Shucard JL, Shucard DW. Information processing speed, neural efficiency, and working memory performance in multiple sclerosis: Differential relationships with structural magnetic resonance imaging. J Clin Exp Neuropsychol 2011; 33(10): 1129-45.
  15. Rao A, Richert N, Howard T, Lewis B, Bash C, McFarland H, et al. Methylprednisolone effect on brain volume and enhancing lesions in MS before and during IFNβ-1b. Neurology 2002; 59(5): 688-94.
  16. Sastre-Garriga J, Ingle GT, Chard DT, Cercignani M, Ramió-Torrentà L, Miller DH, et al. Grey and white matter volume changes in early primary progressive multiple sclerosis: a longitudinal study. Brain 2005; 128(Pt 6): 1454-60.
  17. Dalton CM, Chard DT, Davies GR, Miszkiel KA, Altmann DR, Fernando K, et al. Early development of multiple sclerosis is associated with progressive grey matter atrophy in patients presenting with clinically isolated syndromes. Brain 2004; 127(Pt 5): 1101-7.
  18. Truyen L, van Waesberghe JH, van Walderveen MA, van Oosten BW, Polman CH, Hommes OR, et al. Accumulation of hypointense lesions ("black holes") on T1 spin-echo MRI correlates with disease progression in multiple sclerosis. Neurology 1996; 47(6): 1469-76.
  19. Mattioli F, Bellomi F, Stampatori C, Parrinello G, Capra R. Depression, disability and cognitive impairment in multiple sclerosis: A cross sectional Italian study. Neurol Sci 2011; 32(5): 825-32.
  20. Krupp LB, Alvarez LA, LaRocca NG, Scheinberg LC. Fatigue in multiple sclerosis. Arch Neurol 1988; 45(4): 435-7.
  21. Bonacchi R, Meani A, Pagani E, Marchesi O, Filippi M, Rocca MA. The role of cerebellar damage in explaining disability and cognition in multiple sclerosis phenotypes: A multiparametric MRI study. J Neurol 2022; 269(7): 3841-57.
  22. Mirmosayyeb O, Yazdan Panah M, Mokary Y, Mohammadi M, Moases Ghaffary E, Shaygannejad V, et al. Neuroimaging markers and disability scales in multiple sclerosis: A systematic review and meta-analysis. PLoS One 2024; 19(12): e0312421.
  23. Miscioscia A, Mainero C, Treaba CA, Silvestri E, Scialpi G, Berardi A, et al. The contribution of paramagnetic rim and cortical lesions to physical and cognitive disability at multiple sclerosis clinical onset: evaluating the power of MRI and OCT biomarkers. J Neurol 2024; 271(10): 6702-14.
  24. Nabizadeh F, Zafari R, Mohamadi M, Maleki T, Fallahi MS, Rafiei N. MRI features and disability in multiple sclerosis: A systematic review and meta-analysis. J Neuroradiol 2024; 51(1): 24-37.
  25. Valizadeh A, Moassefi M, Barati E, Ali Sahraian M, Aghajani F, Fattahi MR. Correlation between the clinical disability and T1 hypointense lesions’ volume in cerebral magnetic resonance imaging of multiple sclerosis patients: A systematic review and meta‐analysis. CNS Neurosci Ther 2021; 27(11): 1268-80.
  26. Rahn AC, Koepke S, Stellmann JP, Schiffmann I, Lukas C, Chard D, et al. Magnetic resonance imaging as a prognostic disability marker in clinically isolated syndrome: a systematic review. Acta Neurol Scand 2019; 139(1): 18-32.
  27. Kolind S, Seddigh A, Combes A, Russell-Schulz B, Tam R, Yogendrakumar V, et al. Brain and cord myelin water imaging: a progressive multiple sclerosis biomarker. Neuroimage Clin 2015; 9: 574-80.
  28. Maghzi AH, Revirajan N, Julian L, Spain R, Mowry E, Marcus J, et al. Magnetic Resonance Imaging Correlates Of Clinical Outcomes In Early Multiple Sclerosis (S13.005). Neurology 2014; 82(10_supplement): S13.005.
  29. Polman CH, Reingold SC, Banwell B, Clanet M, Cohen JA, Filippi M, et al. Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 2011; 69(2): 292-302.
  30. Polman CH, Rudick RA. The multiple sclerosis functional composite: a clinically meaningful measure of disability. Neurology 2010; 74(17_supplement_3): S8-S15.
  31. Schmidt P, Wink L. LST: A lesion segmentation tool for SPM. Manual/Documentation for version 2017; 2: 15-26.
  32. Milgram S. Behavioral Study of Obedience. J Abnorm Psychol 1963; 67: 371-8.
  33. Malekian M, Kazemi Y, Zarifian T. Psychometric Properties of the Persian Word Pairs Task to Evaluate Declarative Memory. Basic Clin Neurosci 2022; 13(4): 511-8.
  34. Puente A. Wisconsin card sorting test. Test critiques 1985; 4: 677-82.
  35. Deary IJ, Langan SJ, Hepburn DA, Frier BM. Which abilities does the PASAT test? Pers Individ Differ 1991; 12(10): 983-7.
  36. Krikorian R, Bartok J, Gay N. Tower of London procedure: a standard method and developmental data. J Clin Exp Neuropsychol 1994; 16(6): 840-50.
  37. Berg WK, Byrd DL, McNamara JP, Case K. Deconstructing the tower: Parameters and predictors of problem difficulty on the Tower of London task. Brain Cogn 2010; 72(3): 472-82.
  38. Beck AT, Steer RA, Carbin MG. Psychometric properties of the Beck Depression Inventory: Twenty-five years of evaluation. Clin Psychol Rev 1988; 8(1): 77-100.
  39. Ghassemzadeh H, Mojtabai R, Karamghadiri N, Ebrahimkhani N. Psychometric properties of a persian‐language version of the beck depression inventory‐second edition: BDI‐II‐PERSIAN. Depression anxiety 2005; 21(4): 185-92.
  40. Spielberger CD, Gorsuch RL, Lushene RE. Manual for the State-trait Anxiety Inventory. 1st ed. Palo Alto, CA: Consulting Psychologists Press; 1970.
  41. Abdoli N, Farnia V, Salemi S, Davarinejad O, Ahmadi Jouybari T, Khanegi M, et al. Reliability and Validity of Persian Version of State-Trait Anxiety Inventory among High School Students. East Asian Arch Psychiatry 2020; 30(2): 44-7.
  42. Krupp LB, LaRocca NG, Muir-Nash J, Steinberg AD. The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 1989; 46(10): 1121-3.
  43. Steenwijk MD, Geurts JJ, Daams M, Tijms BM, Wink AM, Balk LJ, et al. Cortical atrophy patterns in multiple sclerosis are non-random and clinically relevant. Brain 2016; 139(Pt 1): 115-26.
  44. Benedict RH, Hulst HE, Bergsland N, Schoonheim MM, Dwyer MG, Weinstock-Guttman B, et al. Clinical significance of atrophy and white matter mean diffusivity within the thalamus of multiple sclerosis patients. Mult Scler J 2013; 19(11): 1478-84.
  45. Bisecco A, Stamenova S, Caiazzo G, d'Ambrosio A, Sacco R, Docimo R, et al. Attention and processing speed performance in multiple sclerosis is mostly related to thalamic volume. Brain Imaging Behav 2018; 12(1): 20-8.
  46. Bisecco A, Rocca MA, Pagani E, Mancini L, Enzinger C, Gallo A, et al. Connectivity-based parcellation of the thalamus in multiple sclerosis and its implications for cognitive impairment: A multicenter study. Hum Brain Mapp 2015; 36(7): 2809-25.
  47. Preziosa P, Rocca MA, Pagani E, Stromillo ML, Enzinger C, Gallo A, et al. Structural MRI correlates of cognitive impairment in patients with multiple sclerosis: A multicenter study. Hum Brain Mapp 2016; 37(4): 1627-44.
  48. Rao SM, Leo GJ, Bernardin L, Unverzagt F. Cognitive dysfunction in multiple sclerosis. I. Frequency, patterns, and prediction. Neurology 1991; 41(5): 685-91.
  49. Ruet A, Hamel D, Deloire MS, Charré-Morin J, Saubusse A, Brochet B. Information processing speed impairment and cerebellar dysfunction in relapsing–remitting multiple sclerosis. J Neurol Sci 2014; 347(1-2): 246-50.
  50. Allen G, Buxton RB, Wong EC, Courchesne E. Attentional activation of the cerebellum independent of motor involvement. Science 1997; 275(5308): 1940-3.
  51. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol 2011; 106(5): 2322-45.
  52. D’Ambrosio A, Pagani E, Riccitelli GC, Colombo B, Rodegher M, Falini A, et al. Cerebellar contribution to motor and cognitive performance in multiple sclerosis: an MRI sub-regional volumetric analysis. Mult Scler J 2017; 23(9): 1194-203.
  53. Moroso A, Ruet A, Lamargue-Hamel D, Munsch F, Deloire M, Coupé P, et al. Posterior lobules of the cerebellum and information processing speed at various stages of multiple sclerosis. J Neurol Neurosurg Psychiatry 2017; 88(2): 146-51.
  54. Janssens AC, van Doorn PA, de Boer JB, Kalkers NF, van der Meche FG, Passchier J, et al. Anxiety and depression influence the relation between disability status and quality of life in multiple sclerosis. Mult Scler 2003; 9(4): 397-403.
  55. Chimowitz MI, Estes ML, Furlan AJ, Awad IA. Further observations on the pathology of subcortical lesions identified on magnetic resonance imaging. Arch Neurol 1992; 49(7): 747-52.
  56. Milner B. Effects of different brain lesions on card sorting: The role of the frontal lobes. Arch Neurol 1963; 9(1): 90-100.
  57. Mortimer JA, Ding D, Borenstein AR, DeCarli C, Guo Q, Wu Y, et al. Changes in brain volume and cognition in a randomized trial of exercise and social interaction in a community-based sample of non-demented Chinese elders. J Alzheimers Dis 2012; 30(4): 757-66.
  58. Aljondi R, Szoeke C, Steward C, Yates P, Desmond P. A decade of changes in brain volume and cognition. Brain Imaging Behav 2019; 13(2): 554-63.
  59. Dastidar P, Heinonen T, Lehtimäki T, Ukkonen M, Peltola J, Erilä T, et al. Volumes of brain atrophy and plaques correlated with neurological disability in secondary progressive multiple sclerosis. J Neurol Sci 1999; 165(1): 36-42.
  60. Ukkonen M, Dastidar P, Heinonen T, Laasonen E, Elovaara I. Volumetric quantitation by MRI in primary progressive multiple sclerosis: volumes of plaques and atrophy correlated with neurological disability. Eur J Neurol 2003; 10(6): 663-9.
  61. Filippi M, Paty DW, Kappos L, Barkhof F, Compston DA, Thompson AJ, et al. Correlations between changes in disability and T2-weighted brain MRI activity in multiple sclerosis: a follow-up study. Neurology 1995; 45(2): 255-60.
  62. Gasperini C, Horsfield MA, Thorpe JW, Kidd D, Barker GJ, Tofts PS, et al. Macroscopic and microscopic assessments of disease burden by MRI in multiple sclerosis: relationship to clinical parameters. J Magn Reson Imaging 1996; 6(4): 580-4.
  63. Gass A, Barker GJ, Kidd D, Thorpe JW, MacManus D, Brennan A, et al. Correlation of magnetization transfer ratio with clinical disability in multiple sclerosis. Ann Neurol 1994; 36(1): 62-7.
  64. Lynch SG, Parmenter BA, Denney DR. The association between cognitive impairment and physical disability in multiple sclerosis. Mult Scler 2005; 11(4): 469-76.
  65. Clouston SA, Brewster P, Kuh D, Richards M, Cooper R, Hardy R, et al. The dynamic relationship between physical function and cognition in longitudinal aging cohorts. Epidemiol Rev 2013; 35(1): 33-50.
  66. Megna R, Alfano B, Lanzillo R, Costabile T, Comerci M, Vacca G, et al. Brain tissue volumes and relaxation rates in multiple sclerosis: implications for cognitive impairment. J Neurol 2019; 266(2): 361-8.