Document Type : Original Article

Authors

1 Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.

2 Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

3 Pain Research Center, Imam Khomeini Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran

Abstract

Background: Syringic acid (SA) is a natural phenolic compound with antioxidant and anti-inflammatory properties. Due to limited studies on the analgesic effect of SA, we decided to comprehensively investigate this effect. Thus, the analgesic activity of SA was assessed for the first time using the formalin and writhing models, in addition to the hot plate (HP) test, involving its action on opioid, GABAergic, nitric oxide (NO)/cGMP, and ATP-sensitive K⁺ channel pathways. Furthermore, we examined exploratory and locomotor behaviors post SA administration.
Methods: A total of 231 mice were randomly assigned to groups of 7. SA was administered at doses of 25, 50, and 100 mg/kg. To investigate the possible pathways, naloxone, flumazenil, L-NAME/methylene blue, and glibenclamide were administered before SA injection. Behavioral tests were performed using the open-field (OF) apparatus. Statistical analysis was performed using one-way (or two-way) analysis of variance (ANOVA) with Tukey, least significant difference (LSD), and Bonferroni post hoc tests. All the results were evaluated under blind conditions.
Results: SA showed significant analgesic effects in the acute (P < 0.050) and chronic (P < 0.001) phases of formalin (P < 0.050) and writhing tests (P < 0.001) but not in the HP test. Furthermore, SA decreased exploratory behavior. Opioid receptor blockade reduced the number of writhes (P < 0.050). Moreover, using L-NAME increased the pain reaction time in the HP test (P < 0.010).
Conclusion: SA exhibited analgesic effects in the formalin and writhing models, but not in the HP test. Blocking opioid receptors in the writhing test reduced the analgesic effect of SA. Exploratory behavior increased when flumazenil, naloxone, and L-NAME were injected before SA administration.

Keywords

Main Subjects

  1. Lee GI, Neumeister MW. Pain: Pathways and Physiology. Clin Plast Surg 2020; 47(2): 173-80.
  2. Onasanwo SA, Rotu RA. Antinociceptive and anti-inflammatory potentials of kolaviron: mechanisms of action. J Basic Clin Physiol Pharmacol 2016; 27(4): 363-70.
  3. Vearrier D, Grundmann O. Clinical Pharmacology, Toxicity, and Abuse Potential of Opioids. J Clin Pharmacol 2021; 61 Suppl 2: S70-S88.
  4. Solomon DH, Husni ME, Libby PA, Yeomans ND, Lincoff AM, Lϋscher TF, et al. The Risk of Major NSAID Toxicity with Celecoxib, Ibuprofen, or Naproxen: A Secondary Analysis of the PRECISION Trial. Am J Med 2017; 130(12): 1415-22.e4.
  5. Ilari S, Giancotti LA, Lauro F, Gliozzi M, Malafoglia V, Palma E, et al. Natural Antioxidant Control of Neuropathic Pain-Exploring the Role of Mitochondrial SIRT3 Pathway. Antioxidants (Basel) 2020; 9(11): 1103.
  6. Robbins RJ. Phenolic acids in foods: an overview of analytical methodology. J Agric Food Chem 2003; 51(10): 2866-87.
  7. Rathee P, Chaudhary H, Rathee S, Rathee D, Kumar V, Kohli K. Mechanism of action of flavonoids as anti-inflammatory agents: a review. Inflamm Allergy Drug Targets 2009; 8(3): 229-35.
  8. Falade T, Ishola IO, Akinleye MO, Oladimeji-Salami JA, Adeyemi OO. Antinociceptive and anti-arthritic effects of aqueous whole plant extract of Trianthema portulacastrum in rodents: Possible mechanisms of action. J Ethnopharmacol 2019; 238: 111831.
  9. Shahidi S, Komaki A, Raoufi S, Salehi I, Zarei M, Mahdian M. The Anti-nociceptive Effect of Ellagic Acid in Streptozotocin-induced Hyperglycemic Rats by Oxidative Stress Involvement. Basic Clin Neurosci 2021; 12(6): 861-72.
  10. Kamothi DJ, CL M, PK P, Kumar D, AG T. Synthesis, Characterization and Ameliorating Effect of Quercetin Nanoparticles against Ethion-Induced Oxidative Stress in Male Rats. Explor Anim Med Res 2023; 13(2): 231-42.
  11. Pacheco-Palencia LA, Mertens-Talcott S, Talcott ST. Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from Acai (Euterpe oleracea Mart.). J Agric Food Chem 2008; 56(12): 4631-6.
  12. Srinivasulu C, Ramgopal M, Ramanjaneyulu G, Anuradha CM, Suresh Kumar C. Syringic acid (SA) ‒ A Review of Its Occurrence, Biosynthesis, Pharmacological and Industrial Importance. Biomed Pharmacother 2018; 108: 547-57.
  13. Li Y, Zhang L, Wang X, Wu W, Qin R. Effect of Syringic acid on antioxidant biomarkers and associated inflammatory markers in mice model of asthma. Drug Dev Res 2019; 80(2): 253-61.
  14. Güzelad Ö, Özkan A, Parlak H, Sinen O, Afşar E, Öğüt E, et al. Protective mechanism of Syringic acid in an experimental model of Parkinson's disease. Metab Brain Dis 2021; 36(5): 1003-14.
  15. Periyannan V, Veerasamy V. Syringic acid may attenuate the oral mucosal carcinogenesis via improving cell surface glycoconjugation and modifying cytokeratin expression. Toxicol Rep 2018; 5: 1098-106.
  16. Adeyi OE, Somade OT, Ajayi BO, James AS, Adeyi AO, Olayemi ZM, et al. Syringic acid demonstrates better anti-apoptotic, anti-inflammatory and antioxidative effects than ascorbic acid via maintenance of the endogenous antioxidants and downregulation of pro-inflammatory and apoptotic markers in DMN-induced hepatotoxicity in rats. Biochem Biophys Rep 2023; 33: 101428.
  17. Dalmagro AP, Camargo A, Pedron NB, Garcia SAM, Zeni ALB. Morus nigra leaves extract revokes the depressive-like behavior, oxidative stress, and hippocampal damage induced by corticosterone: a pivotal role of the phenolic syringic acid. Behav Pharmacol 2020; 31(4): 397-406.
  18. Kumar S, Prahalathan P, Raja B. Syringic acid ameliorates (L)-NAME-induced hypertension by reducing oxidative stress. Naunyn Schmiedebergs Arch Pharmacol 2012; 385(12): 1175-84.
  19. Okur ME, Şakul Mechanism of antinociceptive action of syringic acid. J Res Pharm 2021; 25(3): 277-86.
  20. Hajipour S, Farbood Y, Dianat M, Nesari A, Sarkaki A. Effect of Berberine against Cognitive Deficits in Rat Model of Thioacetamide-Induced Liver Cirrhosis and Hepatic Encephalopathy (Behavioral, Biochemical, Molecular and Histological Evaluations). Brain Sci 2023; 13(6): 944.
  21. Gomes NM, Rezende CM, Fontes SP, Matheus ME, Fernandes PD. Antinociceptive activity of Amazonian Copaiba oils. J Ethnopharmacol 2007; 109(3): 486-92.
  22. Niemegeers CJ, Van Bruggen JA, Janssen PA. Suprofen, a potent antagonist of acetic acid-induced writhing in rats. Arzneimittelforschung 1975; 25(10): 1505-9.
  23. Aykan DA, Kesim M, Ayan B, Kurt A. Anti-inflammatory and antinociceptive activities of glucagon-like peptides: evaluation of their actions on serotonergic, nitrergic, and opioidergic systems. Psychopharmacology (Berl) 2019; 236(6): 1717-28.
  24. Morteza-Semnani K, Mahmoudi M, Heidar MR. Analgesic activity of the methanolic extract and total alkaloids of Glaucium paucilobum. Methods Find Exp Clin Pharmacol 2006; 28(3): 151-5.
  25. Fatemi R, Moghaddam HF, Farbod Y, Beygtashkhani R. Effects of Crocin on brain neurotrophins, cognition, balance and pain in toxic-induced demyelination model. Acta Neurol Taiwan 2024; 33(2): 48-59.
  26. Trongsakul S, Panthong A, Kanjanapothi D, Taesotikul T. The analgesic, antipyretic and anti-inflammatory activity of Diospyros variegata Kruz. J Ethnopharmacol 2003; 85(2-3): 221-5.
  27. Melo AS, Monteiro MC, da Silva JB, de Oliveira FR, Vieira JL, de Andrade MA, et al. Antinociceptive, neurobehavioral and antioxidant effects of Eupatorium triplinerve Vahl on rats. J Ethnopharmacol 2013; 147(2): 293-301.
  28. Trevisan G, Rossato MF, Tonello R, Hoffmeister C, Klafke JZ, Rosa F, et al. Gallic acid functions as a TRPA1 antagonist with relevant antinociceptive and antiedematogenic effects in mice. Naunyn Schmiedebergs Arch Pharmacol 2014; 387(7): 679-89.
  29. Collier HO, Dinneen LC, Johnson CA, Schneider C. The abdominal constriction response and its suppression by analgesic drugs in the mouse. Br J Pharmacol Chemother 1968; 32(2): 295-310.
  30. Tjølsen A, Hole K. Animal Models of Analgesia. In: Dickenson A, Besson JM, editors. The Pharmacology of Pain. Berlin, Heidelberg: Springer Berlin Heidelberg; 1997. p. 1-20.
  31. Ishola IO, Akindele AJ, Adeyemi OO. Analgesic and anti-inflammatory activities of Cnestis ferruginea Vahl ex DC (Connaraceae) methanolic root extract. J Ethnopharmacol 2011; 135(1): 55-62.
  32. Srinivasan S, Muthukumaran J, Muruganathan U, Venkatesan RS, Jalaludeen AM. Antihyperglycemic effect of syringic acid on attenuating the key enzymes of carbohydrate metabolism in experimental diabetic rats. Biomed Prev Nutr 2014; 4(4): 595-602.
  33. Sommer C, Kress M. Recent findings on how proinflammatory cytokines cause pain: peripheral mechanisms in inflammatory and neuropathic hyperalgesia. Neurosci Lett 2004; 361(1-3): 184-7.
  34. Dalmagro AP, Camargo A, Severo Rodrigues AL, Zeni ALB. Involvement of PI3K/Akt/GSK-3β signaling pathway in the antidepressant-like and neuroprotective effects of Morus nigra and its major phenolic, syringic acid. Chem Biol Interact 2019; 314: 108843.
  35. Zhang JJ, Kong Locomotor activity: A distinctive index in morphine self-administration in rats. PLoS One 2017; 12(4): e0174272.
  36. Towers S, Princivalle A, Billinton A, Edmunds M, Bettler B, Urban L, et al. GABAB receptor protein and mRNA distribution in rat spinal cord and dorsal root ganglia. Eur J Neurosci 2000; 12(9): 3201-10.
  37. Arana-Argáez VE, Domínguez F, Moreno DA, Isiordia-Espinoza MA, Lara-Riegos JC, Ceballos-Góngora E, et al. Anti-inflammatory and antinociceptive effects of an ethanol extract from Senna septemtrionalis. Inflammopharmacology 2020; 28(2): 541-9.
  38. Schmidtko A, Tegeder I, Geisslinger G. No NO, no pain? The role of nitric oxide and cGMP in spinal pain processing. Trends Neurosci 2009; 32(6): 339-46.
  39. Luo ZD, Cizkova D. The role of nitric oxide in nociception. Curr Rev Pain 2000; 4(6): 459-66.
  40. Barreras-Espinoza I, Soto-Zambrano JA, Serafín-Higuera N, Zapata-Morales R, Alonso-Castro Á, Bologna-Molina R, et al. The Antinociceptive Effect of a Tapentadol-Ketorolac Combination in a Mouse Model of Trigeminal Pain is Mediated by Opioid Receptors and ATP-Sensitive K(+) Channels. Drug Dev Res 2017; 78(1): 63-70.
  41. Wang M, Thyagarajan B. Pain pathways and potential new targets for pain relief. Biotechnol Appl Biochem 2022; 69(1): 110-23.
  42. Nazıroğlu M, Braidy N. Thermo-Sensitive TRP Channels: Novel Targets for Treating Chemotherapy-Induced Peripheral Pain. Front Physiol 2017; 8: 1040.